精英家教网 > 高中数学 > 题目详情
用数字2,3,5,6,7组成没有重复数字的五位数,使得每个五位数中的相邻的两个数都互质,则这样的五位数的个数为
 
考点:计数原理的应用
专题:排列组合
分析:先做出不合题意的结果数,26一起时有C21A44,36一起有同上面一样48种结果236一起有C21A33,用所有的排列减去不合题意的,得到符合条件的结果数,
解答: 解:由题意知先做出不合题意的结果数
26一起时有C21A44=48
36一起有同上面一样48种结果
236一起有C21A33=12
因此满足的共有A55-48×2+12=36
故答案为:36.
点评:本题考查考查计数原理的应用,本题是一个和数字有关的问题,注意题目中的限制条件,把不合题意的去掉,得到符合条件的结果数.采用正难则反的原则.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a(a∈N*),Sn=pan+1(p≠0,p≠-1,n∈N*).
(1)求数列{an}的通项公式;
(2)对任意k∈N*,若将ak+1,ak+2,ak+3按从小到大的顺顺序排列后,此三项均能构成等差数列,且记公差为dk
(i)求p的值以及数列{dk}的通项公式;
(ii)记数列{dk}的前k项和为Sk,问是否存在正整数a,使得Sk<30恒成立,若存在,求出a的最大值;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,存在常数a>0使得f(a)=1,对任意实数x,y,有f(x-y)=
f(x)f(y)+1
f(y)-f(x)
,其中f(x)≠f(y).若f(y)有意义,试证明:存在常数T>0,使得f(x+T)=f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知棱柱ABCD-A′B′C′D′,底面ABCD是边长为a的菱形,∠BAD=60°,对角线AC、BD交于点O,A′O⊥平面ABCD.
(Ⅰ)证明:不论侧棱AA′的长度为何值,总有平面AA′C′C⊥平面BB′D′D;
(Ⅱ)当二面角B-DD′-C为45°时,求侧棱AA′的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)×f(y)=f(xy),f(x)≠0.求证:f(x)×f(
1
x
)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表:
x3456789
y66697381899091
已知
7
i-1
xi2
=280,
7
i-1
yi2
=45309,
7
i-1
xiyi
=3487.
(1)求
.
x
.
y
;参考公式:
b
=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)
2
=
n
i-1
xiyi-n
.
x
.
y
n
i-1
xi2-nx-2
a
=
.
y
-
b
.
x

(2)画出散点图;
(3)判断纯利y与每天销售件数x之间是否线性相关,如果线性相关,求出回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x+φ)(|φ|≤
π
2
)的图象向左平移
π
6
个单位后,得到一个偶函数的图象,则φ的一个可能值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”的假设为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为1的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,点P1,P2分别是线段AB,BD1(不包括端点)上的动点,且线段P1P2平行于平面A1ADD1,则
(1)直线EF被球O截得的线段长为
 

(2)四面体P1P2AB1的体积的最大值是
 

查看答案和解析>>

同步练习册答案