分析 由由题意,先对两个命题p:(x+2)(x-6)≤0,q:|x-2|<5,进行化简,再由p或q为真命题,p且q为假命题得出两命题p,q一真一假,分两类解出参数的取值范围即可得到答案.
解答 解:(1)p:-2≤x≤6,q:-3≤x≤7,
由题意可知p,q一真一假,
p真q假时,
由$\left\{{\begin{array}{l}{-2≤x≤6}\\{x<-3或x>7}\end{array}}\right.⇒x∈∅$
p假q真时,
由$\left\{{\begin{array}{l}{x<-2或x>6}\\{-3≤x≤7}\end{array}}\right.⇒-3≤x<-2或6<x≤7$
所以实数x的取值范围是[-3,-2)∪(6,7].
点评 本题考查命题真假的判断与应用,考查不等式的解法,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},1)$ | B. | $(\frac{1}{2},+∞)$ | C. | $(\frac{1}{2},1)∪(1,+∞)$ | D. | $(\frac{1}{2},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题 | |
| B. | 命题“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0” | |
| C. | 命题“p且q”为真命题,则命题p和命题q均为真命题 | |
| D. | “x>3”是“x>2”的必要不充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$或-$\frac{5}{3}$ | B. | -$\frac{3}{2}$或$\frac{5}{3}$ | C. | 0或1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com