精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当为何值时,取得最大值,并求出其最大值;
(2)若,求的值.

(1)当时,函数取得最大值,其值为;(2).

解析试题分析:(1)先利用二倍角公式以及辅助角公式将函数的解析式进行化简,化简为
的形式,在的前提下,只需令,可以得出函数的最大值,并且可以解出函数取最大值时对应的值;(2)先利用已知条件求出
,再利用同角三角函数的基本关系求出的值,最后利用两角差的正弦公式求出的值.
试题解析:(1)
,即当时,函数取得最大值,其值为
(2)由,化简得
又由得,,故
=.
考点:1.二倍角公式;2.辅助角公式;3.三角函数的最值;4.同角三角函数的基本关系;5.两角差的正弦公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知锐角三角形ABC中,向量,且
(1)求角B的大小;
(2)当函数y=2sin2A+cos()取最大值时,判断三角形ABC的形状。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A,B,C所对的边分别为
(Ⅰ)叙述并证明正弦定理;
(Ⅱ)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象的一部分如下图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)当时,求函数的最大值与最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)求的取值范围;
(2)设,试问当变化时,有没有最小值,如果有,求出这个最小值,如果没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF
连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角的对边分别为.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量函数.
(1)求函数的最小正周期及单调递减区间;
(2)在锐角三角形ABC中,的对边分别是,且满足 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为
(l)求的值;
(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案