精英家教网 > 高中数学 > 题目详情
18.若数列{an}满足:an+1+(-1)nan=n(n∈N*),则a1+a2+…+a100=2550.

分析 an+1+(-1)nan=n(n∈N*),可得:a2-a1=1,a3+a2=2,a4-a3=3,a5+a4=4,a6-a5=5,a7+a6=6,a8-a7=7,…,可得a3+a1=1=a7+a5=…,a4+a2=2+3,a8+a6=6+7,a12+a10=10+11,…,利用分组求和即可得出.

解答 解:∵an+1+(-1)nan=n(n∈N*),
∴a2-a1=1,a3+a2=2,a4-a3=3,a5+a4=4,a6-a5=5,a7+a6=6,a8-a7=7,…,
可得a3+a1=1=a7+a5=…,∴(a1+a3+…+a99)=25.
a4+a2=2+3,a8+a6=6+7,a12+a10=10+11,…,∴a2+a4+…+a100=5×25+8×$\frac{25×24}{2}$=2525.
则a1+a2+…+a100=2550.
故答案为:2550.

点评 本题考查了等差数列的通项公式及其前n项和公式、递推关系、分组求和,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若非空集合A={x|a+1≤x≤3a-5},集合B={x|1≤x≤16},则满足A⊆(A∩B)的实数a的取值范围是(  )
A.[0,7]B.[7,15]C.[3,7]D.[3,15]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某地区交管部门为了对该地区驾驶员的某项考试成绩进行分析,随机抽取了15分到45分之间的1000名学员的成绩,并根据这1000名驾驶员的成绩画出样本的频率分布直方图(如图),则成绩在[30,35)内的驾驶员人数共有300.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0.则双曲线的渐近线方程为(  )
A.y=±xB.y=$±\frac{\sqrt{6}}{2}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于三个不同平面α,β,γ与直线l,下列命题中的假命题是(  )
A.若α⊥β,则α内一定存在直线平行于β
B.若α与β不垂直,则α内一定不存在直线垂直于β
C.若α⊥γ,β⊥γ,α∩β=l,则l⊥γ
D.若α⊥β,则α内所有直线垂直于β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知三角形的三边之比为3:4:$\sqrt{37}$,则最大内角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接收的快递的数量的中位数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列命题:
①某地2015年各月的平均气温(℃)数据的茎叶图如图,则这组数据的中位数为20;
②函数f(x-1)是偶函数,且在(0,+∞)上单调递增,则f(2${\;}^{\frac{1}{8}}$)>f(log2$\frac{1}{8}$)>f[($\frac{1}{8}$)2]
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3,
其中正确命题的序号是①②(把你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β为锐角,且cos(α+β)=$\frac{3}{5}$,sinα=$\frac{5}{13}$,则cosβ的值为(  )
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{16}{65}$D.$\frac{63}{65}$

查看答案和解析>>

同步练习册答案