精英家教网 > 高中数学 > 题目详情
11.人的体重是人的身体素质的重要指标之一.某校抽取了高二的部分学生,测出他们的体重(公斤),体重在40公斤至65公斤之间,按体重进行如下分组:第1组[40,45),第2组[45,50),第3组[50,55),第4组[55,60),第5组[60,65],并制成如图所示的频率分布直方图,已知第1组与第3组的频率之比为1:3,第3组的频数为90.
(Ⅰ)求该校抽取的学生总数以及第2组的频率;
(Ⅱ)用这些样本数据估计全市高二学生(学生数众多)的体重.若从全市高二学生中任选5人,设X表示这5人中体重不低于55公斤的人数,求X的分布列和数学期望.

分析 (Ⅰ)设该校抽查的学生总人数为n,第2组、第3组的频率分别为p2,p3,先求出p3,由此能求出n,由p2+0.375+(0.025+0.013+0.037)×5=1,求出p2,由此能求出该校抽查的学生总人数和从左到右第2组的频率.
(Ⅱ)由(Ⅰ)知:体重不低于55公斤的学生的概率为$\frac{1}{4}$,X服从二项分布$X~B(5,\frac{1}{4})$,由此能求出随机变量X的分布列和数学期望.

解答 (本小题满分12分)
(Ⅰ)设该校抽查的学生总人数为n,第2组、第3组的频率分别为p2,p3
则p3=0.025×3×5=0.375,所以$n=\frac{90}{p_3}=240$,(3分)
由p2+0.375+(0.025+0.013+0.037)×5=1,解得p2=0.25,
所以该校抽查的学生总人数为240人,从左到右第2组的频率为0.25.(6分)
(Ⅱ)由(Ⅰ)知:体重不低于55公斤的学生的概率为$p=(0.013+0.037)×5=\frac{1}{4}$,(8分)
X服从二项分布$X~B(5,\frac{1}{4})$,$p(X=k)=C_5^k{(\frac{1}{4})^k}{(\frac{3}{4})^{5-k}}$,k=0,1,2,3,4,5,(9分)
P(X=0)=${C}_{5}^{0}(\frac{3}{4})^{5}=\frac{243}{1024}$,
P(X=1)=${C}_{5}^{1}(\frac{1}{4})(\frac{3}{4})^{4}=\frac{405}{1024}$,
P(X=2)=${C}_{5}^{2}(\frac{1}{4})^{2}(\frac{3}{4})^{3}$=$\frac{270}{1024}$,
P(X=3)=${C}_{5}^{3}(\frac{1}{4})^{3}(\frac{3}{4})^{2}$=$\frac{90}{1024}$,
P(X=4)=${C}_{5}^{4}(\frac{1}{4})^{4}(\frac{3}{4})$=$\frac{15}{1024}$,
P(X=5)=${C}_{5}^{5}(\frac{1}{4})^{5}$=$\frac{1}{1024}$,
所以随机变量X的分布列为:

X012345
P$\frac{243}{1024}$$\frac{405}{1024}$$\frac{270}{1024}$$\frac{90}{1024}$$\frac{15}{1024}$$\frac{1}{1024}$
(10分)
则$EX=5×\frac{1}{4}=\frac{5}{4}$.(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.a∈R,设函数f(x)=(-x2+ax)e-x,x∈R.
(1)当a=-2时,求函数f(x)的单调减区间;
(2)若x∈(-1,1)内单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.由x=0,y=x3,y=1所围成的平面图形绕y轴旋转一周,所得几何体体积是$\frac{3π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,P为椭圆C上的点,在△PF1F2中,点Q满足$\overrightarrow{{F}_{1}P}$=4$\overrightarrow{{F}_{1}Q}$,∠F1PF2=∠QF2F1,则椭圆C的离心率e的取值范围是(  )
A.0<e<$\frac{1}{5}$B.$\frac{1}{5}$<e<$\frac{1}{3}$C.$\frac{1}{3}$<e<1D.0<e<$\frac{1}{5}$或$\frac{1}{3}$<e<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两个乒乓球选手进行比赛,他们的水平相当,规定“七局四胜”,即先赢四局者胜,若已知甲先赢了前两局,求:
(1)乙取胜的概率;
(2)比赛打满七局的概率;
(3)设比赛局数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x(1-a|x|).
(1)当a>0时,关于x的方程f(x)=a有三个相异实根x1,x2,x3,设x1<x2<x3,求$\frac{{x}_{1}}{{x}_{2}+{x}_{3}}$的取值范围;
(2)当a≤1时,f(x)在[-1,1]上的最大值为M,最小值为m,若M-m=4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,点A是椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上动点,点P在直线OA上,且$\overrightarrow{OA}•\overrightarrow{OP}=6$,则线段OP在x轴上的投影的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某小学五年级一次考试中,五名同学的语文、英语成绩如表所示:
学生A1A2A3A4A5
语文(x分)8991939597
英语(y分)8789899293
(1)请在下图的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的英语成绩高于90分的人数,求随机变量X不小于1的概率.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了了解某天甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,
测量产品中的微量元素x,y的含量(单位:微克),当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.已知该天甲厂生产的产品共有98件,如表是乙厂的5件产品的测量数据:
编号 1 2 3 4 5
 x 169 178 166 175 180
 y 75 80 77 7081
(1)求乙厂该天生产的产品数量;
(2)用上述样本数据统计乙厂该天生产的优等品的数量;
(3)从乙厂抽取的上述5件产品中,随机抽取2件.求抽取的2件产品中优等品的件数X的分布列及数学期望.

查看答案和解析>>

同步练习册答案