精英家教网 > 高中数学 > 题目详情
10.已知0<a<$\frac{1}{2}$,随机变量ξ的分布列如下,则当a增大时(  )
ξ-101
Pa$\frac{1}{2}$-a$\frac{1}{2}$
A.E(ξ)增大,D(ξ)增大B.E(ξ)减小,D(ξ)增大C.E(ξ)增大,D(ξ)减小D.E(ξ)减小,D(ξ)减小

分析 利用数学期望和方差公式得出关于a的函数,根据函数单调性判断E(ξ)和D(ξ)的变化情况.

解答 解:E(ξ)=$\frac{1}{2}$-a,
∴当a增大时,E(ξ)减小,
D(ξ)=(-$\frac{3}{2}$+a)2a+($\frac{1}{2}$-a)2($\frac{1}{2}$-a)+($\frac{1}{2}$+a)2•$\frac{1}{2}$=-a2+2a+$\frac{1}{4}$,
∴D(ξ)在(0,$\frac{1}{2}$)上随a的增大而增大,
故选B.

点评 本题考查了数学期望与方差的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:
男性女性总计
爱好10
不爱好8
总计30
已知在这30人中随机抽取1人抽到爱好运动的员工的概率是$\frac{8}{15}$.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?
(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知各顶点都在一个球面上的正四棱柱(侧棱垂直于底面且底面为正方形的四棱柱)的高为2,这个球的表面积为6π,则这个正四棱柱的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线的顶点为原点,焦点为F(1,0),过焦点的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|AB|=6,则点P的坐标为($\frac{1}{2}$,$±\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从2,4,8,16中任取两个不同的数字,分别记为a,b,则logab为整数的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了增强环保意识,某校从男生中随机抽取60人,从女生中随机抽取50人,参加环保知识测试,统计数据如下表所示:
(参考数据:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
优秀非优秀总计
男生402060
女生203050
总计6050110
P(X2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
则认为环保知识测试成绩是否优秀与性别有关的把握为(  )
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平行六面体ABCD-A${\;}_{{1}_{\;}}$B1C1D1中,$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{BC}$+3z$\overrightarrow{{C}_{1}C}$,则x+y+z=(  )
A.1B.$\frac{7}{6}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出的T的值是(  )
A.47B.48C.49D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$|{\vec a}|=3,|{\vec b}|=4,\vec a•\vec b=-6\sqrt{3}$.求:
(Ⅰ)$\vec a与\vec b$的夹角θ;
(Ⅱ)$|{\vec a+\vec b}|$.

查看答案和解析>>

同步练习册答案