精英家教网 > 高中数学 > 题目详情
12.已知a,b∈R,当x>0时,不等式ax+b≥lnx,则a+b的最小值为0.

分析 令y=lnx-ax-b,求出导数,当a≤0时,y′>0,函数递增,无最值.当a>0时,求得单调区间,和极值及最值,进而得到a+b的不等式,再令f(a)=a-1-lna,通过导数求出单调区间和极值、最值,进而得到a+b的最小值.

解答 解:令y=lnx-ax-b,则y′=$\frac{1-ax}{x}$(x>0),
当a≤0时,y′>0,函数递增,无最值.
当a>0时,0<x<$\frac{1}{a}$时,y′>0,函数递增;当x>$\frac{1}{a}$时,y′<0,函数递减.
则x=$\frac{1}{a}$处取得极大值,也为最大值,且为-lna-1-b.
当x>0时,不等式ax+b≥lnx恒成立,
即有-lna-1-b≤0,
即b≥-1-lna,
a+b≥a-1-lna,
令f(a)=a-1-lna,f′(a)=1-$\frac{1}{a}$=$\frac{a-1}{a}$,
当a>1时,f′(a)>0,f(a)递增;当0<a<1时,f′(a)<0,f(a)递减.
则a=1处f(a)取得极小值,也为最小值,且为0.
即有a+b≥0.
即有a+b的最小值为0.
故答案为:0.

点评 本题考查不等式的恒成立问题注意转化为求函数的最值问题,运用导数判断单调性,求极值和最值是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知x=3是函数f(x)=alnx+x2-10x的一个极值点,则实数a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x+$\frac{8}{3}$.
(1)求f(x)的单调递减区间,
(2)求f(x)在区间[-3,3]上的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在坐标原点,左、右焦点分别为F1,F2,P为椭圆C上的动点,△PF1F2的面积最大值为$\sqrt{3}$,以原点为圆心,椭圆短半轴长为半径的圆与直线3x-4y+5=0相切.
(1)求椭圆C的方程;
(2)若直线l过定点(1,0)且与椭圆C交于A,B两点,点M是椭圆C的右顶点,直线AM与直线BM分别与y轴交于P,Q两点,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体外接球表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{2}-4x+5,x≥1}\end{array}\right.$
(1)求f(0)+f(1)的值;
(2)求使得f(x)<5成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=lg(2sinx-$\sqrt{2}$)-$\sqrt{1-2cosx}$的定义域为[$\frac{π}{6}$+2kπ,2kπ+$\frac{3π}{4}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”个数为26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x1,x2是函数f(x)=lnx+$\frac{1}{2}$x2-(a+$\frac{4}{a}$)x+1的两个极值点,且x1<x2,a>0.
(Ⅰ)求证:x1x2为定值;
(Ⅱ)求f(x1)+f(x2)的取值范围;
(Ⅲ)求f(x2)-f(x1)的最大值.

查看答案和解析>>

同步练习册答案