精英家教网 > 高中数学 > 题目详情
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.
(Ⅰ)判断f(x)的奇偶性,并证明之;
(Ⅱ)判断f(x)的单调性,并证明之.
分析:(Ⅰ)令x=y=0求得f(0)=0,令y为-x,f(x)+f(-x)=f(0)=0,即可判断f(x)的奇偶性;
(Ⅱ)利用单调性的定义即可判断f(x)的单调性,在R上任取x1,x2,且令△x=x1-x2>0,可证得△y=f(x1)-f(x2)<0,问题得到解决.
解答:解 (Ⅰ)函数f(x)为奇函数.…(2分)
证明:∵函数f(x)的定义域为R,而在f(x+y)=f(x)+f(y)中,令y为-x,
则有f(0)=f(x)+f(-x)…(4分)
又将x,y都取0代入得f(0)=0,即:f(-x)=-f(x),
又由x在R中的任意性可知,函数f(x)为奇函数.…(6分)
(Ⅱ)函数f(x)在R上为单调减函数…(8分)
证明:在R上任取x1,x2,且令△x=x1-x2>0,
由△y=f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(△x)+f(x2)-f(x2)=f(△x)…(10分)
又由题可知当x>0,f(x)<0,故f(△x)<0,从而△y<0,
这样就说明了函数f(x)在R上为单调减函数.…(12分)
点评:本题考查抽象函数及其应用,难点在于△y=f(x1)-f(x2)=f(x1-x2+x2)-f(x2)的转化,突出考查转化思想与综合应用单调性定义解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
ab

(3)已知函数f(x)的定义域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

同步练习册答案