精英家教网 > 高中数学 > 题目详情
3.已知两点A(-1,-1),B(3,7),则线段AB的垂直平分线方程为2x-y+1=0.

分析 由题意可得AB的中点和AB的斜率,进而可得点斜式方程,化为一般式可得.

解答 解:∵A(-1,-1),B(3,7),
∴AB的中点(1,3),
AB的斜率k=$\frac{-1-7}{-1-3}$=2,
∴线段AB的垂直平分线方程为y-3=2(x-1),
化为一般式可得2x-y+1=0
故答案为:2x-y+1=0

点评 本题考查直线的一般式方程和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在?ABCD中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AD}$|=3.∠DAB=60°.求:
(1)$\overrightarrow{AD}$•$\overrightarrow{BC}$;
(2)$\overrightarrow{AB}$•$\overrightarrow{CD}$;
(3)$\overrightarrow{AB}$•$\overrightarrow{DA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l过点M(1,2),且分别交x轴的正半轴、y轴的正半轴于点A,B,其中O为坐标原点,当△AOB的面积为多少时,直线l有两条?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.k棱柱有f(k)个对角面,则k+1棱柱的对角面个数f(k+1)为(  )
A.f(k)+k-1B.f(k)+k+1C.f(k)+kD.f(k)+k-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若方程2x3-6x2+6+m=0有三个不同的实数根,则m的取值范围(  )
A.(-6,0)B.(-6,2)C.(-2,0)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4,如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB.
(1)求证:DE⊥平面BCD
(2)求二面角B-AD-E的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥S-ABC中,底面ABC是正三角形,AB=4,SA=SC=2$\sqrt{3}$,侧面SAC⊥底面ABC,D,E分别为AB,SB的中点.
(Ⅰ)求证:AC⊥SB;
(Ⅱ)求直线SC与平面ECD所成角的正弦值;
(Ⅲ)求二面角E-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的数阵中,每行、每列的三个数均成等比数列,如果数阵中所有数的乘积等于$\frac{1}{512}$,那么a22=(  )
$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$.
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在四棱锥S-ABCD中,SA⊥面ABCD,ABCD为正方形,过A且垂直于SC的平面交SB、SC、SD于E、F、G,求证:AE⊥SB.

查看答案和解析>>

同步练习册答案