精英家教网 > 高中数学 > 题目详情
11.已知直线l过点M(1,2),且分别交x轴的正半轴、y轴的正半轴于点A,B,其中O为坐标原点,当△AOB的面积为多少时,直线l有两条?

分析 设直线l的方程为:$\frac{x}{a}+\frac{y}{b}=1$(a,b>0).把点M(1,2)代入可得$\frac{1}{a}+\frac{2}{b}=1$,即b+2a=ab,$S=\frac{1}{2}ab$,可得a2-Sa+S=0,可得△>0,a1+a2=S>0,a1a2=S>0.解出即可.

解答 解:设直线l的方程为:$\frac{x}{a}+\frac{y}{b}=1$(a,b>0).
把点M(1,2)代入可得$\frac{1}{a}+\frac{2}{b}=1$,即b+2a=ab,
∵$S=\frac{1}{2}ab$,
化为a2-Sa+S=0,(*)
可得△=S2-4S>0,a1+a2=S>0,a1a2=S>0.
解得0<S<4.
因此当且仅当0<S<4时,方程(*)有两解,因此直线l有两条.

点评 本题考查了直线的截距式、三角形的面积计算公式、一元二次方程的解与判别式的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函f(x)=$\frac{1}{2}$ax2+(a-1)x,g(x)=tlnx,数若直线y=e-2x+1是g(x)在x=e2处的切线方程.
(Ⅰ)函数f(x)+g(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)当a>0时,对任意正实数x,不等式f(x)≥g(x)+2k-$\frac{3}{2a}$恒成立,求实数k的取值范围;
(Ⅲ)证明:$\frac{{n}^{n}}{(n+1)^{n+1}}$<$\frac{1}{ne}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为$\frac{1}{3}$,乙获胜的概率为$\frac{2}{3}$,各局比赛结果相互独立.
(1)求乙在4局以内(含4局)赢得比赛的概率;
(2)若每局比赛胜利方得1分,对方得0分,求甲最终总得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:(-i)50+(-i)25+1=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cosα}}$,(270°<α<360°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过圆x2+y2=2与外一点P(6,-8),作圆的一条切线PA,A为切点,求线段PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设P,Q为一个正方体表面上的两点,已知此正方体绕着直线PQ旋转θ(0<θ<2π)角后能与自身重合,那么符合条件的直线PQ有13条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知两点A(-1,-1),B(3,7),则线段AB的垂直平分线方程为2x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化下列二次积分为极坐标形式:${∫}_{0}^{1}$dx${∫}_{0}^{1}$f(x,y)dy.

查看答案和解析>>

同步练习册答案