精英家教网 > 高中数学 > 题目详情
把同样粗的圆木一层一层堆起来,每上面的一层要比下面的一层少一根(最上层堆的根数少于其下面一层即可).如果要堆起1000根圆木,那么在最下面最低限度摆的圆木的根数是
 
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:设最下层摆n根能把圆木摆完,由1000小于等差数列的前n项和而大于前n-1项的和求解n的值.
解答: 解:如果最下层摆圆木n根,最多能把圆木堆到S(n)根.
把1000根圆木堆起来,若最下层摆圆木n-1根会剩下一些,摆n根能摆完,
S(n)=
n(n+1)
2

则S(n-1)<1000≤S(n).
n(n-1)
2
<1000≤
n(n+1)
2

∴n(n-1)<2000≤n(n+1).
由于44×45=1980<2000<45×46=2070.
∴n=45.
故答案为:45.
点评:本题考查等差数列的前n项和,考查了不等式的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1和AB上的点,则下列说法正确的是
 
(填上所有正确命题的序号)
(1)A1C⊥平面B1EF;
(2)在平面A1B1C1D1内总存在与平面B1EF平行的直线;
(3)△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
(4)当E,F为中点时平面B1EF截该正方体所得的截面图形是五边形;
(5)当E,F为中点时,平面B1EF与棱AD交于点P,则AP=
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C极坐标方程为ρ2-4ρcosθ-4ρsinθ+6=0,以极点为原点,极轴为x轴正半轴建立直角坐标系,直线l的参数方程为
x=-2-
2
t
y=3+
2
t
(t为参数),则曲线C上的点到直线l的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xcosx-sinx+1(x>0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记xi为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,对?x∈R都有f(x-1)=f(x+1)成立,当x∈(0,1]且x1≠x2时,有
f(x2)-f(x1)
x2-x1
<0.给出下列命题:
(1)f(1)=0
(2)f(x)在[-2,2]上有3个零点   
(3)(2014,0)是函数y=f(x)的一个对称中心  
(4)直线x=1是函数y=f(x)图象的一条对称轴.
其中正确命题的编号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,并满足:an=2an+1-an+2,a7=4-a3,则S9=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列问题:
已知(1-2x)2014=a0+a1x+a2x2+a3x3+…+a2014x2014,令x=1,可得a0+a1+a2+…+a2014=(1-2×1)2014=1,令x=-1,可得a0-a1+a2-a3+…+a2014=(1+2×1)2014=32014请仿照这种“赋值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x∈R|y=
x-1
},N={y∈R|y=
x+1
}.则N∩∁UM=(  )
A、∅
B、{x|0≤x<1}
C、{x|0≤x≤1}
D、{x|-1≤x<1}

查看答案和解析>>

同步练习册答案