精英家教网 > 高中数学 > 题目详情
设z=2x+y,其中变量x,y满足条件
x-4y≤-3
3x+5y≤25 
x≥1 
,则z的最小值为(  )
A、3B、6.4C、9.6D、12
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式对应的平面区域如图:
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过
x=1
x-4y=-3
的交点时,
直线y=-2x+z的截距最小,
由图可知,zmin=2×1+1=3.
故选:A.
点评:本题主要考查线性规划的基本应用,根据z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C是△ABC的三个内角,且满足sin2A-sin2B+sin2C=
2
sinAsinC

(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定积分
1
-1
|x|dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x+y-1≤0
x-2y-1≥0
kx+y+1≥0
表示的平面区域是三角形,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①3≥3
x+
1
x
≥2 (x∈R )

③“若x>3,则x2>9”的否命题
④“若a≤1,则方程ax2+2x+1=0至少有一个负根”的逆否命题.
则其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

变量x,y满足约束条件
y≤1
x≤2
x-y≥0
,则x+3y最大值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出四个命题:
①若a≥b>-1,则
a
1+a
b
1+b

②a<-1是一元二次方程ax2+2x+1=0有一个正根和一个负根的充分不必要条件;
③在数列{an}中,a1<a2<a3是数列{an}为递增数列的必要不充分条件;
④方程(x+y-2)
x2+y2-9
=0
表示的曲线是一个圆和一条直线.
其中为真命题的是(  )
A、①②③B、①③④
C、②④D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个命题:①函数是其定义域到值域的映射;②f(x)=
2-x
+
x-2
是函数;
③函数y=2x(x∈N)的图象是一条直线;④y=
x2
x
与g(x)=x是同一函数.
正确的命题个数(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n).若函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn.;
(2)对(1)中的{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ为正整数),若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn}(公共项tk=cp=dq,k,p,q为正整数),求数列{tn}的前n项和Sn

查看答案和解析>>

同步练习册答案