精英家教网 > 高中数学 > 题目详情
16.已知某四棱锥的三视图如图所示,则该四棱锥的体积是$\frac{4\sqrt{3}}{3}$.

分析 根据几何体的三视图,得出该几何体是底面为正方形的三棱锥,求出它的体积即可.

解答 解:根据几何体的三视图,得;
该几何体是如图所示的四棱锥,
且该四棱锥的底面是边长为2cm的正方形ABCD,
高为$\sqrt{3}$;
所以,该四棱锥的体积为
V=$\frac{1}{3}$×22×$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.

点评 本题考查了空间几何体的三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知P为椭圆3x2+4y2=12上异于长轴顶点的任一点,A、B为长轴顶点,则直线PA、PB的斜率之积为(  )
A.$-\frac{3}{4}$B.$-\frac{4}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax-1(a∈R)
(1)求函数f(x)的单调区间;
(2)讨论函数F(x)=f(x)-xlnx在定义域内零点的个数;
(3)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点P(6,5),Q(2,3)的直线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,输出的s值为(  )
A.2B.$\frac{5}{3}$C.$\frac{3}{2}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,则$\overrightarrow{a}$•$\overrightarrow{a}$+$\overrightarrow{a}$•$\overrightarrow{b}$等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1+$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,圆C1:(x+$\sqrt{3}$)2+y2=4,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),并以O为极点,x轴正半轴建立极坐标系.
(1)写出圆C1的圆心C1的直角坐标,并将C2化为极坐标方程;
(2)若直线C3的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),C2与C3相交于A,B两点,求△ABC1的面积(C1为圆C1的圆心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系的原点为极点,x轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l的方程为$ρcos(θ+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α为参数),点M是曲线C上的一动点.
(1)求线段OM的中点P的轨迹C'的直角坐标方程;
(2)求曲线C'上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.执行如图所示的程序框图.
(Ⅰ)当输入n=5时,写出输出的a的值;
(Ⅱ)当输入n=100时,写出输出的T的值.

查看答案和解析>>

同步练习册答案