精英家教网 > 高中数学 > 题目详情
已知向量
a
•(
a
+2
b
)=0,|
a
|=2,|
b
|=2,则向量
a
b
的夹角为
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:利用数量积运算和余弦函数的单调性即可得出.
解答: 解:设向量
a
b
的夹角为θ.
∵向量
a
•(
a
+2
b
)=0,|
a
|=2,|
b
|=2,
a
2
+2
a
b
=22+2×2×2cosθ=0,
∴cosθ=-
1
2

∵θ∈[0,π],
θ=
3

故答案为:
3
点评:本题考查了数量积运算和余弦函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x2-(a+1)x+a=0,求该方程的解组成的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.
(1)求抛物线C的方程;
(2)设抛物线C与直线y=x-b相交于不同于原点的两点A,B,若OA⊥OB,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x
,求f′(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2011
2011
,设F(x)=f(x+3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,当b-a取得最小值时,a+b等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y-4≤0
x-2y+2≥0
x≥0,y≥0
,则z=2x-y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2x-1
x+1
,则函数的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某一项篮球邀请赛,甲、乙两名篮球运动员都参加了7场比赛,他们各场比赛得分的情况用如图茎叶图表示.则甲、乙两名运动员得分的中位数分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(2+i)2=
 

查看答案和解析>>

同步练习册答案