精英家教网 > 高中数学 > 题目详情
已知集合A={x∈N|
3
x
≥1},B={x∈N|log2(x+1)≤1},S⊆A,S∩B≠∅,则集合S的个数为
 
考点:集合的包含关系判断及应用
专题:集合
分析:依题意,可求得A={1,2,3},B={0,1},再由S⊆A,S中必有1,即可求得答案.
解答: 解:∵A={x∈N|
3
x
≥1}={1,2,3},B={x∈N|log2(x+1)≤1}={0,1},
且S⊆A,S∩B≠∅,
∴S中必有1;
∴集合S的个数为
C
0
2
+
C
1
2
+
C
2
2
=4,
故答案为:4.
点评:本题考查集合的包含关系判断及应用,考查组合数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1
与B1D1交点,已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求证:A1C1⊥平面B1BDD1
(Ⅱ)求证:AO∥平面BC1D;
(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点与直角坐标系中坐标原点重合,极轴与x轴正半轴重合,曲线C的极坐标方程是ρ=2
5
sinθ,点P的直角坐标为(3,
5
),直线l过点P且倾斜角为
π
4
,设直线l与曲线C交于A、B两点.
(Ⅰ)写出直线的参数方程
(Ⅱ)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S3=2S2+4,a5=36.
(Ⅰ)求an,Sn
(Ⅱ)设bn=Sn-1(n∈N*),Tn=
1
b1
+
1
b2
+
1
b3
+…+
1
bn
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=x+b与曲线x2+y2=4(y≥0)有公共点,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点(4,-2)关于直线2x-y-4=0的对称点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

由花盆摆成以下图案,根据摆放规律,可得第4个图形中的花盆数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x是菱形},集合B={x|x是平行四边形},则集合A和集合B的关系是
 
,请说明理由
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
t
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρcosθ+3=0
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.

查看答案和解析>>

同步练习册答案