【题目】试比较3-与(n为正整数)的大小,并予以证明.
【答案】见解析
【解析】
利用作差法可得3--=,确定3-与的大小关系等价于比较与2n+1的大小,利用数学归纳法证明即可.
证明:3--=,
于是确定3-与的大小关系等价于比较与2n+1的大小.
由2<2×1+1,<2×2+1,>2×3+1,>2×4+1,>2×5+1,
可猜想当n≥3时,>2n+1,
证明如下:
ⅰ当n=3时,由上可知显然成立.
ⅱ假设当n=k时,>2k+1成立.
那么,当n=k+1时,
=2×>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1,
所以当n=k+1时猜想也成立,
综合ⅰ和ⅱ,对一切n≥3的正整数,都有>2n+1.
所以当n=1,2时,3-<;
当n≥3时,3->(n为正整数).
科目:高中数学 来源: 题型:
【题目】已知函数是定义域为的奇函数,当.
(Ⅰ)求出函数在上的解析式;
(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;
(Ⅲ)若关于的方程有三个不同的解,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(江淮十校2017届高三第一次联考文数试题第7题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为( )
A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦尺,弓形高寸,则阴影部分面积约为(注:,,1尺=10寸)( )
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在梯形中,//,且,,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示.
(1)求证:;
(2)若,,四棱锥的体积为,求四棱锥的表面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com