精英家教网 > 高中数学 > 题目详情
15.已知函数φ(x)=$\frac{a}{x+1}$,a>0.
(1)若函数f(x)=lnx+φ(x)在(1,2)上只有一个极值点,求a的取值范围;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

分析 (1)求出${f}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}$=$\frac{{x}^{2}+(2-a)x+1}{x(x+1)^{2}}$,由题意f′(x)=0在(1,2)上只有一个根,从而f′(1)•f′(2)<0,由此能求出a的取值范围.
(2)推导出$\frac{g({x}_{2})+{x}_{2}-[g({x}_{1})+{x}_{1}]}{{x}_{2}-{x}_{1}}$<0,设h(x)=g(x)+x,则y=h(x)在(0,2]上是减函数,由此利用导数性质能求出a的取值范围.

解答 解:(1)∵函数φ(x)=$\frac{a}{x+1}$,a>0,函数f(x)=lnx+φ(x),
∴${f}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}$=$\frac{{x}^{2}+(2-a)x+1}{x(x+1)^{2}}$,
∵函数f(x)=lnx+φ(x)在(1,2)上只有一个极值点,
∴f′(x)=0在(1,2)上只有一个根,
∵x>0,∴f′(1)•f′(2)=$\frac{1+2-a+1}{1×(1+1)^{2}}$×$\frac{4+(2-a)×2+1}{2(2+1)^{2}}$<0,
解得4<a<$\frac{9}{2}$,
∴a的取值范围是(4,$\frac{9}{2}$).
(2)∵$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,∴$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$+1<0,
∴$\frac{g({x}_{2})+{x}_{2}-[g({x}_{1})+{x}_{1}]}{{x}_{2}-{x}_{1}}$<0,
设h(x)=g(x)+x,则y=h(x)在(0,2]上是减函数,
当1<x≤2时,h(x)=lnx+$\frac{a}{x+1}$+x,${h}^{'}(x)=\frac{1}{x}-\frac{a}{(x+1)^{2}}+1$,
令h′(x)≤0,得a≥$\frac{(x+1)^{2}}{x}+(x+1)^{2}$=${x}^{2}+3x+\frac{1}{x}+3$对x∈(1,2]恒成立,
设m(x)=x2+3x+$\frac{1}{x}$+3,则m′(x)=2x+3-$\frac{1}{{x}^{2}}$,
∵1<x≤2,∴${m}^{'}(x)=2x+3-\frac{1}{{x}^{2}}$,
∵1<x≤2,∴${m}^{'}(x)=2x+3-\frac{1}{{x}^{2}}$>0,
∴m(x)在(1,2]上是增函数,
则当x=2时,m(x)有最大值为$\frac{27}{2}$,则a≥$\frac{27}{2}$,
当0<x≤1时,h(x)=-lnx+$\frac{a}{x+1}$+x,${h}^{'}(x)=-\frac{1}{x}-\frac{a}{(x+1)^{2}}+1$,
令h′(x)≤0,得a≥-$\frac{(x+1)^{2}}{x}$+(x+1)2=${x}^{2}+x-\frac{1}{x}-1$,
设t(x)=${x}^{2}+x-\frac{1}{x}-1$,
则${t}^{'}(x)=2x+1+\frac{1}{{x}^{2}}$>0,
∴t(x)在(0,1]上是增函数,∴t(x)≤t(1)=0,则a≥0.
综上所述:a的取值范围是[$\frac{27}{2},+∞$).

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质、构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈(0,+∞),sinx<x,则(  )
A.¬p:?x∈(0,+∞),sinx≥xB.¬p:?x0∈(0,+∞),sinx0≥x0
C.¬p:?x∈(-∞,0],sinx≥xD.¬p:?x0∈(-∞,0],sinx0≥x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间中,以下命题正确的是(  )
A.平行于同一条直线的两条直线相互平行
B.平行于同一平面的两条直线相互平行
C.垂直于同一条直线的两条直线相互垂直
D.垂直于同一平面的两条直线相互垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知log3(2m2-2)=1+log3m,则函数f(x)=x2-mx-2在[1,2]的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}{x^2}$-(a+1)x+alnx+4(a>0).
(1)求函数f(x)的单调递减区间l
(2)当a=2时,函数y=f(x)在[en,+∞](n∈Z)有零点,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知PA⊥正方形ABCD所在平面,E、F分别是AB,PC的中点,二面角P-CD-A=45°.
(1)求证:EF∥面PAD.
(2)求证:面PCE⊥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数y=f(x)的图象与y=2x+a的图象关于y=-x对称,且f(-2)+f(-4)=1,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.任取x∈[-$\frac{π}{6}$,$\frac{π}{2}$],则使 sinx+cosx∈[1,$\sqrt{2}$]的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{a}{2}$x2-(a2+1)x+alnx(常数a∈R且a≠0),讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案