精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow a=({2,1}),\overrightarrow b=({-1,3})$,若存在向量$\overrightarrow c$使$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,则$|{\overrightarrow c}|$=$\sqrt{13}$.

分析 设$\overrightarrow{c}$=(x,y),由$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,可得$\left\{\begin{array}{l}{2x+y=4}\\{-x+3y=-9}\end{array}\right.$,解出x,y.即可得出.

解答 解:设$\overrightarrow{c}$=(x,y),∵$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,∴$\left\{\begin{array}{l}{2x+y=4}\\{-x+3y=-9}\end{array}\right.$,解得x=3,y=-2.
则$|{\overrightarrow c}|$=$\sqrt{{3}^{2}+(-2)^{2}}$=$\sqrt{13}$.
故答案为:$\sqrt{13}$

点评 本题考查了数量积运算性质、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知x、y满足$\left\{{\begin{array}{l}{x-y≥0}\\{{x^2}-y≤0}\end{array}}\right.$,则$z=-\frac{1}{2}x+y$的取值范围是$[-\frac{1}{16},\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=x2的图象在点$({{x_0},{x_0}^2})$处的切线为m,若m也与函数y=lnx,x∈(0,1]的图象相切,则x0必满足(  )
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x≥0},N={x|x2<1},则M∩N=(  )
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$\frac{a+2i}{1+i}$(a∈R,i是虚数单位)是纯虚数,则实数a的值为(  )
A.-2B.-6C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数$z=\frac{5i}{3-4i}$(i是虚数单位),则|z|=(  )
A.5B.$\sqrt{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,角A,B,C的对边分别为a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A为锐角.
(1)求三角形内角A的大小;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a+i=(b+i)(2-i)(其中a,b是实数,i为虚数单位),则复数a+bi在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy 中,F,A,B 分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦点、右顶点和上顶点,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)过点P(0,2)作直线l 交椭圆于M,N 两点,过M 作平行于x 轴的直线交椭圆于另外一点Q,连接NQ
,求证:直线NQ 经过一个定点.

查看答案和解析>>

同步练习册答案