分析 (Ⅰ) (1)取线段AE的中点G,连结MG,由三角形中位线定理可得MG=$\frac{1}{2}EC=BF$,又MG∥EC∥BF,可得MBFG是平行四边形,故MB∥FG,由线面平行的判定可得MB∥平面AEF;
(2)由MB⊥AC,平面ACC1A1⊥平面ABC,可得MB⊥平面ACC1A1,进一步得到FG⊥平面ACC1A1.由面面垂直的判定可得平面AEF⊥平面ACC1A1;
(Ⅱ)作AD⊥BC于D,则AD⊥平面BEF,由等积法结合已知求出三棱锥A-BEF的体积得答案.
解答 (Ⅰ)证明:(1)取线段AE的中点G,连结MG,![]()
则MG=$\frac{1}{2}EC=BF$,又MG∥EC∥BF,
∴MBFG是平行四边形,故MB∥FG.
而FG?平面AEF,MB?平面AEF,
∴MB∥平面AEF;
(2)∵MB⊥AC,平面ACC1A1⊥平面ABC,
∴MB⊥平面ACC1A1,而BM∥FG,
∴FG⊥平面ACC1A1.
∵FG?平面AEF,∴平面AEF⊥平面ACC1A1;
(Ⅱ)解:作AD⊥BC于D,则AD⊥平面BEF,且AD=$\sqrt{3}$.
于是${V}_{A-BEF}=\frac{1}{3}×{S}_{△BEF}×AD=\frac{1}{3}×\frac{1}{2}×1×2×\sqrt{3}=\frac{\sqrt{3}}{3}$.
故${V}_{B-AEF}={V}_{A-BEF}=\frac{\sqrt{3}}{3}$.
点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等体积法求多面体的体积,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,0),2 | B. | (-1,0),2 | C. | (1,0),$\sqrt{2}$ | D. | (-1,0),$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $-\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-∞,-1)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-3)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com