精英家教网 > 高中数学 > 题目详情
9.下列各式正确的题目序号有(  )
①log26-log23=log23     
②log39=3       
③$\root{4}{{{{(-3)}^4}}}=-3$
④20.1<20.2
⑤log0.72.1>log0.71.9       
⑥${0.9^{\frac{1}{2}}}>{0.8^{\frac{1}{2}}}$.
A.①④B.②⑥C.③⑤D.④⑥

分析 分别根据基本函数的运算性质和函数的单调性判断即可.

解答 解:①log26-log23=log22=1,
②log39=2,
③$\root{4}{(-3)^{4}}$=3,
④20.1<20.2
⑤log0.72.1<log0.71.9       
⑥${0.9^{\frac{1}{2}}}>{0.8^{\frac{1}{2}}}$.
故正确的有④⑥,
故选:D.

点评 本题考查了基本函数的运算性质,以及基本函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数是正态分布密度函数的是(  )
A.f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{\frac{{{{(x-r)}^2}}}{2σ}}}$B.f(x)=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$
C.f(x)=$\frac{1}{{2\sqrt{2}π}}{e^{\frac{{{{(x-1)}^2}}}{4}}}$D.f(x)=$\frac{1}{{\sqrt{2π}}}{e^{\frac{x^2}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.由2个人在一座8层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则这两个人在不同层离开电梯的概率是(  )
A.$\frac{7}{8}$B.$\frac{6}{7}$C.$\frac{5}{6}$D.$\frac{36}{49}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC的顶点B、C在椭圆$\frac{x^2}{12}+\frac{y^2}{3}=1$上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(  )
A.$8\sqrt{3}$B.6C.$4\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是线段AB,CC1的中点,∨MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1
②平面MB1P⊥平面ND1A1
③∨MB1P在底面ABCD上的射影图形的面积为定值;
④△MB1P在侧面DD1C1C上的射影图形是三角形.
其中正确的命题序号是(  )
A.B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=x3B.y=|x|+1C.y=-x2+1D.y=($\frac{1}{2}$)X

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)若直线l过点F2且与轨迹E交于P、Q两点.
(i)无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.
(ii)在(i)的条件下,求△MPQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}•\overrightarrow{b}$=-$\frac{1}{2}$.若平面向量$\overrightarrow{p}$满足$\overrightarrow{p}•\overrightarrow{a}$=$\overrightarrow{p}•\overrightarrow{b}$=$\frac{1}{2}$,则|$\overrightarrow{p}$|=(  )
A.2B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C的对边分别为a,b,c,已知$\frac{sinA-sinB}{sinC}$=$\frac{b+c}{a+b}$,
(1)求角A的大小;
(2)求4sinB•cosC的取值范围.

查看答案和解析>>

同步练习册答案