精英家教网 > 高中数学 > 题目详情
15.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)-6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.
(Ⅰ)求圆C的直角坐标方程及其参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,求x+y的最大值,并求出此时点P的直角坐标.

分析 (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而可得参数方程;
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$),即可求x+y的最大值,并求出此时点P的直角坐标.

解答 解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)-6,
∴x2+y2=4x+4y-6,
即(x-2)2+(y-2)2=2为圆C的直角坐标方程.      …(4分)
所以所求的圆C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ为参数).                      …(6分)
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$)        …(8分)
当 $θ=\frac{π}{4}$时,即点P的直角坐标为(3,3)时,x+y取到最大值为6.…(10分)

点评 本题考查点的极坐标和直角坐标的互化,考查参数方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.
(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;
(2)若函数f(x)=kx+sinx是“$\frac{π}{2}$同比不减函数”,求k的取值范围;
(3)是否存在正常数T,使得函数f(x)=x+|x-1|-|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,则“$\overrightarrow{a}$•$\overrightarrow{b}$<0”是“θ为钝角”的(  )
A.充分不必要条件B.必要不充分
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为等差数列,Sn为前n项和,公差为d,若$\frac{{S}_{2017}}{2017}$-$\frac{{S}_{17}}{17}$=100,则d的值为(  )
A.$\frac{1}{20}$B.$\frac{1}{10}$C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X1234
Y51484542
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)完成下表,并求所种作物的平均年收获量:
Y51484542
频数    
(2)在所种年收获量为51或48的作物中随机选取两株求收获量之和,收获量之和为t的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.运行如图算法语句时,输出的数=(  )
A.10B.4C.6D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=n2-4n.
(1)求数列{an}的通项公式;
(2)求Sn的最大或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{2x+1}$+x的值域是(  )
A.[0,+∞)B.(-∞,0]C.[-$\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,平面上有四个点A、B、P、Q,其中A、B为定点,且AB=$\sqrt{3}$,P、Q为动点,满足AP=PQ=QB=1,又△APB和△PQB的面积分别为S和T,则S2+T2的最大值为(  )
A.$\frac{6}{7}$B.1C.$\sqrt{3}$D.$\frac{7}{8}$

查看答案和解析>>

同步练习册答案