分析 (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的直角坐标方程,从而可得参数方程;
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$),即可求x+y的最大值,并求出此时点P的直角坐标.
解答 解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)-6,
∴x2+y2=4x+4y-6,
即(x-2)2+(y-2)2=2为圆C的直角坐标方程. …(4分)
所以所求的圆C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ为参数). …(6分)
(Ⅱ)由(Ⅰ)可得,x+y=4+$\sqrt{2}$(cosθ+sinθ)=4+2sin($θ+\frac{π}{4}$) …(8分)
当 $θ=\frac{π}{4}$时,即点P的直角坐标为(3,3)时,x+y取到最大值为6.…(10分)
点评 本题考查点的极坐标和直角坐标的互化,考查参数方程的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | 1 | 2 | 3 | 4 |
| Y | 51 | 48 | 45 | 42 |
| Y | 51 | 48 | 45 | 42 |
| 频数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (-∞,0] | C. | [-$\frac{1}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{7}$ | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com