精英家教网 > 高中数学 > 题目详情
5.如图,平面上有四个点A、B、P、Q,其中A、B为定点,且AB=$\sqrt{3}$,P、Q为动点,满足AP=PQ=QB=1,又△APB和△PQB的面积分别为S和T,则S2+T2的最大值为(  )
A.$\frac{6}{7}$B.1C.$\sqrt{3}$D.$\frac{7}{8}$

分析 利用三角形面积公式分别表示出S与T,代入S2+T2中,利用同角三角函数间的基本关系化简,将第一问确定的关系式代入,利用余弦函数的性质及二次函数的性质求出最大值即可.

解答 解:在△PAB中,由余弦定理得:
PB2=PA2+AB2-2PA•AB•cosA=1+3-2$\sqrt{3}$cosA=4-2$\sqrt{3}$cosA,
在△PQB中,由余弦定理得:
PB2=PQ2+QB2-2PQ•QB•cosQ=2-2cosQ,
∴4-2$\sqrt{3}$cosA=2-2cosQ,即cosQ=$\sqrt{3}$cosA-1
根据题意得:S=$\frac{1}{2}$PA•AB•sinA=$\frac{\sqrt{3}}{2}$sinA,
T=$\frac{1}{2}$PQ•QB•sinQ=$\frac{1}{2}$sinQ,
∴S2+T2=$\frac{3}{4}$sin2A+$\frac{1}{4}$sin2Q
=$\frac{3}{4}$(1-cos2A)+$\frac{1}{4}$(1-cos2Q)=-$\frac{3}{2}$(cosA-$\frac{\sqrt{3}}{6}$)2+$\frac{7}{8}$,
当cosA=$\frac{\sqrt{3}}{6}$时,S2+T2有最大值$\frac{7}{8}$,
故选D.

点评 此题考查了余弦定理,三角形的面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)-6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.
(Ⅰ)求圆C的直角坐标方程及其参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,求x+y的最大值,并求出此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{3}^{x-1},x≤0}\end{array}\right.$,则f(f(1))=(  )
A.$\frac{1}{3}$B.3C.1D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是奇函数又增函数的为(  )
A.y=x+1B.y=-x2C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow b$|=(  )
A.5B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sin(x-$\frac{3}{4}$π)cos(x-$\frac{π}{4}$)=-$\frac{1}{4}$,则cos4x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数g(x)=x2-2x+1+mlnx,(m∈R).
(1)当m=1时,求函数y=g(x)在点(1,0)处的切线方程;
(2)当m=-12时,求f(x)的极小值;
(3)若函数y=g(x)在x∈($\frac{1}{4}$,+∞)上的两个不同的数a,b(a<b)处取得极值,记{x}表示大于x的最小整数,求{g(a)}-{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.若直线AB的倾斜角α∈(0,$\frac{π}{3}$),则e的取值范围是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一次研究性学习中,老师给出函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1).甲、乙、丙、丁四位同学在研究此函数时给出下列结论:
①当x>0时,f(x)=ex(1-x);
②f(x)=0有2个不相等实根;
③f(x)>0的解集为(-1,0)∪(1,+∞);
④函数f(x)在R为减函数,
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案