精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
b2
+
y2
a2
=1(a>b>0)的离心率e=
6
3
,短轴右端点为A,P(1,0)为线段OA的中点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P任作一条直线与椭圆C相交于两点M,N,试问在x上是否存在定点Q,使得∠MQP=∠NQP,若存在,求出点Q坐标;若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据短轴右端点为A,P(1,0)为线段OA的中点,求出b,利用离心率e=
6
3
,求出a,即可求椭圆C的方程;
(Ⅱ)分类讨论,当MN⊥x轴时,x0∈R;当MN与x轴不垂直时,设MN所在直线的方程为y=k(x-1),代入椭圆方程化简,利用韦达定理,结合若∠MQP=∠NQP,则kMQ+kNQ=0,理得k(x0-4)=0,即可得出结论.
解答: 解:(Ⅰ)由已知,b=2,
又e=
6
3
,即
a2-4
a
=
6
3
,解得a=2
3
,…(2分)
∴椭圆C的方程为
x2
4
+
y2
12
=1
.…(4分)
(Ⅱ)假设存在点Q(x0,0)满足题设条件.
当MN⊥x轴时,由椭圆的对称性可知恒有∠MQP=∠NQP,即x0∈R; …(6分)
当MN与x轴不垂直时,设MN所在直线的方程为y=k(x-1),
代入椭圆方程化简得:(k2+3)x2-2k2x+k2-12=0,
设M(x1,y1),N(x2,y2),则x1+x2=
2k2
k2+3
,x1x2=
k2-12
k2+3

若∠MQP=∠NQP,则kMQ+kNQ=0,则
kMQ+kNQ=
y1
x1-x0
+
y2
x2-x0
=k[
2(k2-12)
k2+3
-
2(1+x0)k2
k2+3
+2x0]=0

整理得k(x0-4)=0,
∵k∈R,∴x0=4,即Q的坐标为Q(4,0).
综上,在x轴上存在定点Q(4,0),使得∠MQP=∠NQP.…(12分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a2x=
2
+1,求
a3x+a-3x
ax+a-x
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
5
(0<α<
π
2
),求cos(2α+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1的中点.如图所示.
(1)求证:DC1⊥平面BCD;
(2)求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=cosx+i,z2=1-isinx,x∈R.
(1)求|z1-z2|的最小值;
(2)设z=z1•z2,记f(x)=Imz(Imz表示复数z的虚部).将函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图象向右平移
π
2
个单位长度,得到函数g(x)的图象.试求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log2(4x-3)=x+1的解x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列关于x的方程:
(1)sin4x=sin
π
12

(2)sinxcosx+sin2x-2cos2x=0;
(3)3sin2x+8sinxcosx-3cos2x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式6x-2x2-m<0的解集是R,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x+a≥0,x∈R},B={x||x-1|≤3,x∈R}.若(∁UA)∩B=[-2,4],则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案