精英家教网 > 高中数学 > 题目详情
10.若曲线y=x3的切线方程为y=kx+2,则k=(  )
A.-1B.1C.-3D.3

分析 设切点为(m,n),求出函数的导数,求得切线的斜率,由切线的方程,可得k,m的方程,解方程可得k的值.

解答 解:设切点为(m,n),则n=m3,①
y=x3的导数为y′=3x2
由切线方程为y=kx+2,可得
n=km+2,3m2=k,②
由①②可得,k=3,m=-1,n=-1,
故选D.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,以及运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:(写出化简过程)
(1)${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{0.5}}$;
(2)$ln(e\sqrt{e})+{log_2}6+{log_{\frac{1}{2}}}3+{log_2}3•{log_3}4$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an},Sn为其前n项和,若a1=9,a3+a5=0,则S6的值为(  )
A.6B.9C.15D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}{x^3}-({2m+1}){x^2}+3m({m+2})x+1$,其中m为实数.
(Ⅰ)当m=-1时,求函数f(x)在[-4,4]上的最大值和最小值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|1<x≤5},B={x|log2x≥1},则A∩B=(  )
A.{x|2≤x≤5}B.{x|1<x≤2}C.{x|1<x≤3}D.{x|1<x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知lg5=m,lg7=n,则log27=(  )
A.$\frac{m}{n}$B.$\frac{n}{1-m}$C.$\frac{1-n}{m}$D.$\frac{1+n}{1+m}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,则m等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式|2x+3|<1的解集为(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

同步练习册答案