精英家教网 > 高中数学 > 题目详情
10.若90°<β<α<120°,则α+β的取值范围是180°<α+β<240°,α-β的取值范围是0°<α-β<30°.

分析 根据已知中90°<β<α<120°,结合不等式的基本性质,可得α+β的取值范围和α-β的取值范围.

解答 解:∵90°<β<α<120°,
∴90°+90°<α+β<120°+120°,
即180°<α+β<240°,
α-β>0°,
又∵-120°<-β<-90°,
∴-30°<α-β<30°,
综上可得:0°<α-β<30°,
故答案为:180°<α+β<240°,0°<α-β<30°

点评 本题考查的知识点是不等式的基本性质,角的范围的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输出的值为5040,则判断框中可以填(  )
A.k<2015?B.k<2016?C.k<2017?D.k<2018?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,BC垂直于正方形A1ACC1所在平面,AC=2,BC=1,D为AC中点,E为线段BC1上的一点(端点除外),平面AB1E与BD交于点F
(Ⅰ)若E不是BC1的中点,求证:AB1∥EF;
(Ⅱ)若E是BC1的中点,求AE与平面BC1D所成角的正弦值;
(Ⅲ)在线段BC1上是否存在点E,使得A1E⊥CE,若存在,求出$\frac{BE}{E{C}_{1}}$的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,AB=2AD=4,平面PAD⊥底面ABCD,△PAD为等边三角形,则球面O的表面积为(  )
A.$\frac{32π}{3}$B.32πC.64πD.$\frac{64π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设a,b,c,d∈R,求证:对于任意p,q∈R,$\sqrt{(a-p)^{2}+(b-q)^{2}}$+$\sqrt{(c-p)^{2}+(d-q)^{2}}$≥$\sqrt{(a-c)^{2}+(b-d)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C上的点S(x,y)到点M(1,0)的距离与它到直线x=4的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若点A(x1,y1)与点P(x2,y2)在曲线C上,x12+x22=4且点A在第一象限,点P在第二象限,点B与点A关于原点对称,求三角形△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(ax-x2)ex
(Ⅰ)当a=2时,求f(x)的单调递减区间;
(Ⅱ)若函数f(x)在(-1,1]上单调递增,求a的取值范围;
(Ⅲ)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={-2,-1,0,1,2},B=[-2,1),则A∩B=(  )
A.{-2,-1,0}B.{-2,-1,0,1}C.(-2,1)D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|-2<x<3},B={x|x2-4≥0},则A∩B=(  )
A.[-2,1)B.(-1,2]C.[2,3)D.[-2,3)

查看答案和解析>>

同步练习册答案