分析 建立坐标系,利用向量的坐标运算的方法求出x,得到所求.
解答 解:如图建立坐标系,![]()
设OC=x.x>0,因为tanC=2,a=2,则OB=2-x,OA=2x,
则$\overrightarrow{AB}$=(x-2.-2x),$\overrightarrow{AC}$=(x,-2x),$\overrightarrow{BC}$=(2,0),
因为$\overrightarrow{AB}•\overrightarrow{AC}=3\overrightarrow{BA}•\overrightarrow{BC}$,所以$\overrightarrow{AB}•(\overrightarrow{AC}+3\overrightarrow{BC})$=0,所以(x-2)(x+6)+4x2=0解得x=2(x=-1,2舍去),
所以O与B 重合,所以∠B=90°,
b=AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=2$\sqrt{5}$.
点评 本题考查了向量的数量积以及坐标法解决问题.
科目:高中数学 来源: 题型:选择题
| A. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,则f(x)•g(x)∈M${\;}_{{a}_{1}{a}_{2}}$ | |
| B. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,且g(x)≠0,则$\frac{f(x)}{g(x)}$∈M${\;}_{\frac{{a}_{1}}{{a}_{2}}}$ | |
| C. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,则f(x)+g(x)∈M${\;}_{{a}_{1}+{a}_{2}}$ | |
| D. | 若f(x)∈M${\;}_{{a}_{1}}$,g(x)∈M${\;}_{{a}_{2}}$,且a1>a2,则f(x)-g(x)∈M${\;}_{{a}_{1}-{a}_{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -$\sqrt{3}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96 | B. | 120 | C. | 132 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com