精英家教网 > 高中数学 > 题目详情
关于x的方程x2+2(m+1)x+2m+6=0的两实根为α和β,根据下列条件求m的范围.
(1)α<2<β;
(2)α<1且β>3.
考点:一元二次方程的根的分布与系数的关系
专题:计算题,函数的性质及应用
分析:令f(x)=x2+2(m+1)x+2m+6,将方程的根化为函数图象与x轴的交点.
解答: 解:令f(x)=x2+2(m+1)x+2m+6,
(1)∵α<2<β,
∴f(2)=4+4(m+1)+2m+6<0,
解得,m<-
7
3

(3)∵α<1且β>3,
∴f(1)=1+2m+2+2m+6<0,
f(3)=9+2(m+1)3+2m+6<0,
解得,m<-
21
8
点评:本题考查了方程的根与函数的零点之间的关系,借助图象解答,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线C:x2-
y2
b2
=1的右焦点为F,双曲线过定点P(2,3).
(1)求双曲线C的方程及右准线l方程;
(2)过右焦点F的直线(不过P点)与双曲线交于A,B两点,记PA,PB的斜率为k1,k2:若k1+k2>2,求直线AB斜率的取值范围,若直线AB与直线l交于M,记PM的斜率为k3,若k3=0,求k1+k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设cos(
π
4
+x)=
3
5
17π
12
<x<
4
,求
2sinxcosx+2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1-3x
1+3x
,x∈(a,1)是非奇非偶函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个口袋里装有7个白球和1个红球,从口袋任取5个球.
(1)共有多少种不同的取法?
(2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,则a的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=Asinωx+b(A,ω,b均为正实数)的图象向左平移
π
12
个单位,平移后的图象如图,则平移后的图象对应的函数解析式为(  )
A、y=2sin(x+
π
6
)+1
B、y=
5
2
sin(x-
π
6
)-
3
2
C、y=
5
4
sin(2x+
π
6
)+
1
4
D、y=
5
4
sin(2x-
π
3
)+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),满足f(1+x)=f(1-x),f(x)=f(4-x).且当x∈[-1,1]时,f(x)=ex,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(
π
4
+A)cos(
π
4
+B)化为和差的结果是
 

查看答案和解析>>

同步练习册答案