对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有;
②当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。
(1)函数是函数,(2) (3)
解析试题分析:
(1)根据函数的定义,验证函数的两个条件,即可判断;
(2)根据因为函数是函数,利用函数的两个条件,即可求得实数的值;
(3)根据(2)知,原方程可以化为,再利用换元法,即可求实数的取值范围.
对考查新定义的题要与熟悉的已知函数性质比较,参考其性质及运算特征进行计算,对新定义熟悉性质后求参数的取值,把方程解的情况转化成求值域,利用换元法、配方法求函数的值域;解题的关键是正确理解新定义.
试题解析:
(1)当时,总有满足①
当时
满足②
所以函数是函数.
(2)
Ⅰ当时,不满足①,所以不是是函数
Ⅱ当时,在上是增函数,则,满足①
由,得
即
因为
所以,与不同时等于1
所以
所以
当时, 即于是
综上所述:
(3) 根据(2)知,原方程可以化为
由得
令,则在单调递增且值域为
所以,当时,方程有一解
当时方程无解
考点:函数恒成立问题.
科目:高中数学 来源: 题型:解答题
我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数与第x天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足(元).
(1)求该村的第x天的旅游收入(单位千元,1≤x≤30,)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求在上的反函数;
(3)对于(2)中的,若关于的不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,,,,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若,工作台从左到右的人数依次为,,,,,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知偶函数满足:当时,,当时,.
(1)求当时,的表达式;
(2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一种放射性元素,最初的质量为,按每年衰减.
(1)求年后,这种放射性元素的质量与的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com