已知函数![]()
(1)若x=2为
的极值点,求实数a的值;
(2)若
在
上为增函数,求实数a的取值范围.
(1)
;(2) ![]()
解析试题分析:(1)通过求导可得
.又因为x=2是极值点.即可求得
.
(2)通过对对数的定义域可得符合题意的不等式![]()
.在
上恒成立.所以转化为研究二次函数的最值问题.通过对称轴研究函数的单调性即可得到结论.本题的的关键是对含参的函数的最值的讨论.以二次的形式为背景紧扣对称轴这个知识点.
试题解析:(1)因为
.因为x=2为f(x)的极值点.所以
即
.解得
.又当
时
.从而x=2为f(x)的极值点成立.
(2)因为f(x)在区间
上为增函数.所以
.在区间
上恒成立. ①当
时. ![]()
在
上恒成立.所以f(x)在
上为增函数.故
符合题意.②当
时.由函数f(x)的定义域可知,必须有
时
恒成立.故只能
.所以![]()
在区间
上恒成立.令g(x)=
.其对称轴为
.因为
.所以
<1.从而g(x)
在
上恒成立.只需要g(3)
即可.由g(3)=
.解得:
.因为
.所以
.综上所述.
的取值范围为
.
考点:1.对数函数的知识点.2.最值问题.3.含参的讨论.
科目:高中数学 来源: 题型:解答题
已知函数
的定义域为
,且
的图象连续不间断. 若函数
满足:对于给定的
(
且
),存在
,使得
,则称
具有性质
.
(1)已知函数
,
,判断
是否具有性质
,并说明理由;
(2)已知函数
若
具有性质
,求
的最大值;
(3)若函数
的定义域为
,且
的图象连续不间断,又满足
,
求证:对任意
且
,函数
具有性质
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:![]()
且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数
,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(1) 判断函数
是否为“(
)型函数”,并说明理由;
(2) 若函数
是“(
)型函数”,求出满足条件的一组实数对
;
(3)已知函数
是“(
)型函数”,对应的实数对
为(1,4).当
时,![]()
![]()
,若当
时,都有
,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数
的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线
上的点
到点
的距离的最小值为
,求
的值;
(2)
如何取值时,函数
存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对定义在
上,并且同时满足以下两个条件的函数
称为
函数。
①对任意的
,总有
;
②当
时,总有
成立。
已知函数
与
是定义在
上的函数。
(1)试问函数
是否为
函数?并说明理由;
(2)若函数
是
函数,求实数
的值;
(3)在(2)的条件下,讨论方程![]()
解的个数情况。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com