精英家教网 > 高中数学 > 题目详情

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(1) 判断函数是否为“()型函数”,并说明理由;
(2) 若函数是“()型函数”,求出满足条件的一组实数对
(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.

(1) 不是“()型函数”,理由详见解析;(2)(答案不唯一)(3)

解析试题分析:(Ⅰ) 由给出的定义可知 展开后的方程中如果不含x说明对任意x都成立,则函数是“()型函数”,如果展开后的方程含x,则根据方程只能求出某个或某些x满足要求而不是每一个x都符合,则函数不是“()型函数(Ⅱ)根据定义列出方程,满足方程的实数对应有无数对,只取其中一对就可以。(Ⅲ)难度系数较大,应先根据题意分析出当时, ,此时。根据已知时,,其对称轴方程为。属动轴定区间问题需分类讨论,在每类中得出的值域即的值域,从而得出的值域,把两个值域取并集即为的值域,由可知的值域是的子集,列出关于m的不等式即可求解。
试题解析:解: (1) 不是“()型函数”,因为不存在实数对使得
对定义域中的每一个都成立;
(2) 由,得,所以存在实数对,
,使得对任意的都成立;
(3)由题意得,,所以当时, ,其中,而时,,其对称轴方程为.
,即时,上的值域为,即,则上    的值域为,由题意得,从而
,即时,的值域为,即,则 上的值域为,则由题意,得
,解得
,即时,的值域为,即,则上的值域为,即,则,解得.
综上所述,所求的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

方便、快捷、实惠的电动车是很多人的出行工具。可是,随着电动车的普及,它的安全性也越来越受到人们关注。为了出行更安全,交通部门限制电动车的行驶速度为24km/h。若某款电动车正常行驶遇到紧急情况时,紧急刹车时行驶的路程S(单位:m)和时间t(单位:s)的关系为:
(Ⅰ)求从开始紧急刹车至电动车完全停止所经过的时间;
(Ⅱ)求该款车正常行驶的速度是否在限行范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,小时内供水总量为吨(),从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求上的反函数
(3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,两个函数的图像关于直线对称.
(1)求实数满足的关系式;
(2)当取何值时,函数有且只有一个零点;
(3)当时,在上解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若x=2为的极值点,求实数a的值;
(2)若上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,.
(1)求当时,的表达式;
(2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)计算:
(2)已知,求的值.

查看答案和解析>>

同步练习册答案