精英家教网 > 高中数学 > 题目详情
11.下列结论正确的是(  )
A.“若a>1,则a2>a”的否命题是“若a>1,则a2≤a”
B.对于定义在R上的可导函数f(x),“f′(x0)=0”是“x0为极值点”的充要条件
C.“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.,?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

分析 A根据若p,则q的否命题是若¬p,则¬q,判断A错误;
B举例说明f′(x0)=0时,x0不一定是f(x)的极值点,充分性不成立;
C利用互为逆否命题的两个命题真假性相同,判断即可;
D利用命题和它的否定命题真假性不同,即可判断出结果.

解答 解:对于A,“若a>1,则a2>a”的否命题是“若a≤1,则a2≤a”,∴A错误;
对于B,定义在R上的可导函数f(x),“f′(x0)=0”时,x0不一定是f(x)的极值点,
如f(x)=x3,f′(x)=3x2,且f(0)=0,
则0不是f(x)的极值点,充分性不成立,不是充要条件,B错误;
对于C,若α=$\frac{π}{3}$,则tanα=$\sqrt{3}$是真命题,
所以它的逆否命题“若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题,C正确;
对于D,命题:?x∈(-∞,0),3x>4x是真命题,
它的否定命题:?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立是假命题,D错误.
故选:C.

点评 本题考查了命题真假的判断问题,也考查了四种命题的关系与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若cosα=-$\frac{1}{2}$,-π<α<0,则角α=-$\frac{2π}{3}$.(用弧度表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“a≥-2”是“函数f(x)=x|x+a|在[2,+∞)上单调递增”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是导函数y=f′(x)在(a,b)上的图象,下列说法正确的个数是(  )
(1)x1和x3是函数y=f(x)的极大值点
(2)x4不是函数y=f(x)的极小值点
(3)函数y=f(x)共有4个极值点
(4)函数y=f(x)在x2处取最小值.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,若输入x,k,b,p的值分别为1,-2,9,3,则输出x的值为(  )
A.-29B.19C.47D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司为确定下一年度投入某产品的宣传费,需了解年宣传费x对年销售额y(单位:万元)的影响,对近6年的年宣传费xi和年销售额yi(i=1,2,…6)数据进行了研究,发现宣传费xi和年销售额yi具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值
 $\overline{x}$ $\overline{y}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$
 6 500 20 1300
(Ⅰ)根据表中数据,建立y关于x的回归方程
(Ⅱ)利用(Ⅰ)中的回归方程预测该公司如果对该产品的宣传费支出为10万元时是销售额
附:回归直线的倾斜率截距的最小二乘估计公式分别为.$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2cos2(x+$\frac{3π}{4}$)-1是(  )
A.最小正周期为π的奇函数B.最小正周期为$\frac{π}{2}$的奇函数
C.最小正周期为$\frac{π}{2}$的偶函数D.最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若一扇形的圆心角为72°,半径为20cm,则扇形的面积为(  )
A.40π cm2B.80π cm2C.40 cm2D.80 cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲、乙两名运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为$\frac{2}{3}$,乙胜的概率为$\frac{1}{3}$.如果比赛采用“五局三胜”制,求甲以3:1获胜的概率P=$\frac{8}{27}$.

查看答案和解析>>

同步练习册答案