| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 函数f(x)=x|x+a|=$\left\{\begin{array}{l}{x(x+a),x≥-a}\\{-x(x+a),x<-a}\end{array}\right.$,可得函数f(x)=x|x+a|在[2,+∞)上单调递增,因此-$\frac{a}{2}$≤2,解得a,即可判断出结论.
解答 解:函数f(x)=x|x+a|=$\left\{\begin{array}{l}{x(x+a),x≥-a}\\{-x(x+a),x<-a}\end{array}\right.$,∵函数f(x)=x|x+a|在[2,+∞)上单调递增,
∴-$\frac{a}{2}$≤2,解得a≥-4.
∴“a≥-2”是“函数f(x)=x|x+a|在[2,+∞)上单调递增”的充分不必要条件.
故选:A.
点评 本题考查了不等式的解法、函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a=8,b=16,A=30° | B. | b=18,c=20,B=60° | C. | a=15,b=2,A=90° | D. | a=4,b=3,A=120° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “若a>1,则a2>a”的否命题是“若a>1,则a2≤a” | |
| B. | 对于定义在R上的可导函数f(x),“f′(x0)=0”是“x0为极值点”的充要条件 | |
| C. | “若tanα$≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题 | |
| D. | ,?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| t | 1 | 2 | 3 | 4 | 5 |
| y | 3 | 5 | 7 | 10 | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com