分析 (1)利用余弦定理即可求出边长BC,再利用角平分线定理求出$\frac{BD}{DC}$的值;
(2)根据平面向量的线性运算与数量积运算,即可求出$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.
解答 解:(1)△ABC中,AB=2,AC=1,cos∠BAC=$\frac{1}{3}$,
∴BC2=AB2+AC2-2AB•ACcos∠BAC
=22+12-2×2×1×$\frac{1}{3}$
=$\frac{11}{3}$,
∴BC=$\sqrt{\frac{11}{3}}$=$\frac{\sqrt{33}}{3}$;
又∠BAC的平分线交BC于点D,
∴$\frac{BD}{DC}$=$\frac{AB}{AC}$=$\frac{2}{1}$=2;
(2)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\overrightarrow{BA}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\overrightarrow{BA}$•$\overrightarrow{AC}$-$\overrightarrow{BA}$•$\overrightarrow{AB}$
=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(π-∠BAC)+${|\overrightarrow{AB}|}^{2}$
=2×1×(-$\frac{1}{3}$)+22
=$\frac{10}{3}$.
点评 本题考查了平面向量的数量积与线性运算问题,也考查了解三角形的应用问题,是综合性题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或$-\root{3}{2}$ | B. | $-\root{3}{2}$ | C. | 1或$\root{3}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com