精英家教网 > 高中数学 > 题目详情
13.如图,在三角形ABC中,AB=2,AC=1,cos∠BAC=$\frac{1}{3}$,∠BAC的平分线交BC于点D.
(1)求边BC长及$\frac{BD}{DC}$的值;
(2)求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

分析 (1)利用余弦定理即可求出边长BC,再利用角平分线定理求出$\frac{BD}{DC}$的值;
(2)根据平面向量的线性运算与数量积运算,即可求出$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

解答 解:(1)△ABC中,AB=2,AC=1,cos∠BAC=$\frac{1}{3}$,
∴BC2=AB2+AC2-2AB•ACcos∠BAC
=22+12-2×2×1×$\frac{1}{3}$
=$\frac{11}{3}$,
∴BC=$\sqrt{\frac{11}{3}}$=$\frac{\sqrt{33}}{3}$;
又∠BAC的平分线交BC于点D,
∴$\frac{BD}{DC}$=$\frac{AB}{AC}$=$\frac{2}{1}$=2;
(2)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\overrightarrow{BA}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\overrightarrow{BA}$•$\overrightarrow{AC}$-$\overrightarrow{BA}$•$\overrightarrow{AB}$
=|$\overrightarrow{BA}$|•|$\overrightarrow{AC}$|•cos(π-∠BAC)+${|\overrightarrow{AB}|}^{2}$
=2×1×(-$\frac{1}{3}$)+22
=$\frac{10}{3}$.

点评 本题考查了平面向量的数量积与线性运算问题,也考查了解三角形的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若二项式($\frac{5}{x}-x\sqrt{x}$)n(n∈N*)展开式中含有x2项,当n取最小值,展开式的各项系数之和为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}(a1≠a2)的公比为q,且a7,a1,a4成等差数列,则q=(  )
A.1或$-\root{3}{2}$B.$-\root{3}{2}$C.1或$\root{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=3sinxcosx的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知方程组$\left\{\begin{array}{l}{x-2y=z-2u}\\{2yz=ux}\end{array}\right.$,对此方程组的每一组正实数解{x,y,z,u},其中z≥y,都存在正实数M,且满足M≤$\frac{z}{y}$,则M的最大值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2,g(x)=alnx.
(1)若曲线y=f(x)-g(x)在x=1处的切线的方程为6x-2y-5=0,求实数a的值;
(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1,x2,都有$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f′(x0)+$\frac{1}{{f'({x_0})}}$<g(x0)-g′(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}的各项均为正数,a1=1,且a3,a4+$\frac{5}{2}$,a11成等比数列.若p-q=10,则ap-aq=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-6,x≥0}\\{lo{g}_{2}|x|,x<0}\\{\;}\end{array}\right.$,则f(f(2))=2.

查看答案和解析>>

同步练习册答案