精英家教网 > 高中数学 > 题目详情
15.函数f(x)=sin(2ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向左平移$\frac{π}{12}$个单位得到的函数图象关于直线x=$\frac{π}{2}$对称,则f($\frac{π}{2}$)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 由周期求得ω,根据函数y=Asin(ωx+φ)的图象变换规律可得所得函数为y=sin(2x+$\frac{π}{6}$+φ)关于直线x=$\frac{π}{2}$对称,求得φ的值,可得f(x)=sin(2x+$\frac{π}{3}$),从而得解.

解答 解:∵函数f(x)=sin(2ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为$\frac{2π}{2ω}$=π,
∴ω=1,f(x)=sin(2x+φ).
把函数f(x)的图象图象向左平移$\frac{π}{12}$个单位后得到的图象对应函数的解析式为
y=sin[2(x+$\frac{π}{12}$)+φ]=sin(2x+$\frac{π}{6}$+φ),
由2x+$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,可求函数的对称轴为:x=$\frac{kπ}{2}+\frac{π}{6}-\frac{1}{2}$φ,k∈Z
再根据所得图象关于直线x=$\frac{π}{2}$对称,
∴$\frac{π}{2}$=$\frac{kπ}{2}+\frac{π}{6}-\frac{1}{2}$φ,k∈Z,可解得:φ=k$π-\frac{2π}{3}$,k∈Z
结合,|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$).
∴f($\frac{π}{2}$)=sin(π$+\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知正实数m,n满足m+n=1,且使$\frac{1}{m}+\frac{16}{n}$取得最小值.若曲线y=xa过点P($\frac{m}{5}$,$\frac{n}{4}$),则a的值为(  )
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等比数列{an}的各项都是正数,且3a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{a}_{20}+{a}_{19}}{{a}_{18}+{a}_{17}}$=(  )
A.1B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,某商业中心O有通往正东方向和北偏东30°方向的两条街道,某公园P位于商业中心北偏东θ角(0<θ<$\frac{π}{2}$,tanθ=3$\sqrt{3}$),且与商业中心O的距离为$\sqrt{21}$公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处,当商业中心O到A,B两处的距离之和最小时,A,B的距离为3$\sqrt{3}$公里.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设实数a,b满足lg(a-1)+lg(b-2)=lg2,则a+b的取值范围是(  )
A.(3,+∞)B.[3+2$\sqrt{2}$,+∞)C.(2,+∞)D.(2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是梯形,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1
(Ⅰ)求证:平面BCC1⊥平面BDC1
(Ⅱ)在线段C1D1上是否存在一点P,使AP∥平面BDC1.若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,每个底边为2的等腰三角形顶角的顶点都在反比例函数y=$\frac{6}{x}$(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形的顶点横坐标为3,…以此类推,用含n的式子表示第n个等腰三角形底边上的高为(  )
A.$\frac{6}{2n-1}$B.$\frac{6}{{2}^{n+1}}$C.$\frac{6}{2n+1}$D.$\frac{6}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如上图,在山顶铁塔上B处测得地面上一点A的俯角为α=60°,在塔底C处   
测得A处的俯角为β=45°,已知铁塔BC部分的高为$12\sqrt{3}$米,山高CD=18+6$\sqrt{3}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在五张卡片上分别写2、3、4、5、6这五个数字,其中6可以当9用,从中任取3张,组成三位数,有多少种方法.

查看答案和解析>>

同步练习册答案