| A. | (3,+∞) | B. | [3+2$\sqrt{2}$,+∞) | C. | (2,+∞) | D. | (2$\sqrt{2}$,+∞) |
分析 由题意可得a-1>0且b-2>0,(a-1)(b-2)=2,由基本不等式,解关于a+b的不等式可得.
解答 解:∵lg(a-1)+lg(b-2)=lg2,
∴a-1>0且b-2>0,(a-1)(b-2)=2,
∴2=(a-1)(b-2)≤($\frac{a-1+b-2}{2}$)2=$\frac{(a+b-3)^{2}}{4}$,
∴(a+b-3)2≥8,解得a+b-3≥2$\sqrt{2}$,或a+b-3≤-2$\sqrt{2}$(舍去),
∴a+b≥3+2$\sqrt{2}$,当期仅当(a-1)=(b-2)即a=b-1时取等号,
故选:B.
点评 本题考查对数的运算性质,涉及基本不等式的应用,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | xf(x)在(0,+∞)单调递增 | B. | xf(x)在(1,+∞)单调递减 | ||
| C. | xf(x)在(0,+∞)上有极大值$\frac{1}{2}$ | D. | xf(x)在(0,+∞)上有极小值$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{\sqrt{15}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | -8 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com