精英家教网 > 高中数学 > 题目详情
11.已知f(x)=2sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)+2.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的对称轴和对称中心.

分析 (Ⅰ)由三角函数中的恒等变换应用化简可得f(x)=sin(2x-$\frac{π}{3}$)+2,由三角函数的周期性及其求法即可得解.
(Ⅱ)由2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的对称轴;由2x-$\frac{π}{3}$=kπ,k∈Z可解得函数f(x)的对称中心.

解答 解:(Ⅰ)f(x)=2sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)+2=sin(2x-$\frac{π}{3}$)+2,
可得:函数f(x)的最小正周期T=$\frac{2π}{2}$=π;
(Ⅱ)由2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的对称轴是:x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z;
由2x-$\frac{π}{3}$=kπ,k∈Z可解得函数f(x)的对称中心是:($\frac{kπ}{2}$+$\frac{π}{6}$,2)k∈Z;

点评 本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已数列{an}满足a1=2,an=an-1+2(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,C=60°,AB=$\sqrt{3}$,AB边上的高为$\frac{4}{3}$,则AC+BC等于(  )
A.$\sqrt{10}$B.5C.3D.$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在四边形ABCD中,AB⊥BC,AB=3,BC=4,△ACD是等边三角形,则$\overrightarrow{AC}•\overrightarrow{BD}$的值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$sin\frac{α}{2}=\frac{2}{3}$,则cos(π-α)=-$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知z∈C,|z-(1+i)|=1,则|z+2+3i|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知⊙M:(x-4)2+y2=1和抛物线C:y2=2px(p>0,其焦点为F),且$\overrightarrow{FM}$=($\frac{15}{4}$,0,),过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与⊙M相切于A、B两点.
(1)求抛物线C的方程;
(2)求直线AB在y轴上的截距的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是正项等差数列,若cn=$\frac{{{a_1}+2{a_2}+3{a_3}+…+n{a_n}}}{1+2+3+…n}$,则数列{cn}也为等差数列.已知数列{bn}是正项等比数列,类比上述结论可得(  )
A.若{dn}满足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,则{dn}也是等比数列
B.若{dn}满足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,则{dn}也是等比数列
C.若{dn}满足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列
D.若{dn}满足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n(n∈N*),且a4=28,则首项a1=1,通项公式an=(2n-1)n.

查看答案和解析>>

同步练习册答案