精英家教网 > 高中数学 > 题目详情
9.已数列{an}满足a1=2,an=an-1+2(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

分析 (1)易得数列{an}是2为首项2为公差的等差数列,可得通项公式;
(2)由(1)和等差数列的求和公式可得.

解答 解:(1)∵数列{an}满足a1=2,an=an-1+2,
∴数列{an}是2为首项2为公差的等差数列,
∴数列{an}的通项公式an=2+2(n-1)=2n;
(2)由(1)和等差数列的求和公式可得数列{an}的前n项和
Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{n(2+2n)}{2}$=n2+n

点评 本题考查等差数列的求和公式和等差数列的判定,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2x2-tx,且|f(x)|=2有且仅有两个不同的实根α和β(α<β).
(1)求实数t的取值范围
(2)若x1、x2∈[α,β]且x1≠x2,求证:4x1x2-t(x1+x2)-4<0;
(3)设$g(x)=\frac{4x-t}{{{x^2}+1}}$,对于任意x1、x2∈[α,β]上恒有|g(x1)-g(x2)|≤λ(β-α)成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知Sn为数列{an}的前n项和,且满足a1=1,anan+1=3n(n∈N+),则S2014=2•31007-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知a,b,c为三角形的三边,a=2,b=2$\sqrt{2}$,C=15°,解此三角形(用余弦定理解答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位,圆O1的方程为ρ=4cosθ,圆O2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=-2+2sinθ}\end{array}\right.$(θ为参数),
(1)求两圆的一般方程.
(2)求两圆的公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.
(1)求证:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.
(3)在(2)中,我们看到了平面图形中的性质类比到空间图形的例子,这样的例子还有不少.下面请观察平面勾股定理的条件和结论特征,试着将勾股定理推广到空间去.
勾股定理的类比三角形ABC四面体O-ABC
条件AB⊥ACOA、OB、OC两两垂直
结论AB2+AC2=BC2
请在答题纸上完成上表中的类比结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若G是△ABC的重心,且$a\overrightarrow{G{A}}+b\overrightarrow{G{B}}+\frac{{\sqrt{3}}}{3}c\overrightarrow{GC}=\vec 0$,则角A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某家电产品受在保修期内维修费等因素的影响,企业生产每件的利润与该产品首次出现故障的时间有关.某厂家生产甲、乙两种品牌,保修期均为2年.现从该厂已售出的两种品牌家电中各随机抽取50件,统计数据如下:
品牌
首次出现故障时间x(年)0<x≤11<x≤2x>20<x≤2x>2
数量(件)2345545
每件利润(百元)1231.82.9
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲、乙品牌产品中随机各抽取一件,求其至少有一件首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的家电均能售出,记生产一件甲品牌的利润为X1,生产一件乙品牌家电的利润为X2,分别求X1,X2的分布列;
(Ⅲ)该厂预计今后这两种品牌家电销量相当,由于资金限制,只能生产其中一种品牌的家电.若从经济效益的角度考虑,你认为应生产哪种品牌的家电?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2sin(x-$\frac{π}{6}$)cos(x-$\frac{π}{6}$)+2.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的对称轴和对称中心.

查看答案和解析>>

同步练习册答案