18£®Ä³¼Òµç²úÆ·ÊÜÔÚ±£ÐÞÆÚÄÚάÐ޷ѵÈÒòËØµÄÓ°Ï죬ÆóÒµÉú²úÿ¼þµÄÀûÈóÓë¸Ã²úÆ·Ê״γöÏÖ¹ÊÕϵÄʱ¼äÓйأ®Ä³³§¼ÒÉú²ú¼×¡¢ÒÒÁ½ÖÖÆ·ÅÆ£¬±£ÐÞÆÚ¾ùΪ2Ä꣮ÏִӸó§ÒÑÊÛ³öµÄÁ½ÖÖÆ·ÅƼҵçÖи÷Ëæ»ú³éÈ¡50¼þ£¬Í³¼ÆÊý¾ÝÈçÏ£º
Æ·ÅÆ¼×ÒÒ
Ê״γöÏÖ¹ÊÕÏʱ¼äx£¨Ä꣩0£¼x¡Ü11£¼x¡Ü2x£¾20£¼x¡Ü2x£¾2
ÊýÁ¿£¨¼þ£©2345545
ÿ¼þÀûÈ󣨰ÙÔª£©1231.82.9
½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬½â´ðÏÂÁÐÎÊÌ⣺
£¨¢ñ£©´Ó¸Ã³§Éú²úµÄ¼×¡¢ÒÒÆ·ÅƲúÆ·ÖÐËæ»ú¸÷³éȡһ¼þ£¬ÇóÆäÖÁÉÙÓÐÒ»¼þÊ״γöÏÖ¹ÊÕÏ·¢ÉúÔÚ±£ÐÞÆÚÄڵĸÅÂÊ£»
£¨¢ò£©Èô¸Ã³§Éú²úµÄ¼Òµç¾ùÄÜÊÛ³ö£¬¼ÇÉú²úÒ»¼þ¼×Æ·ÅÆµÄÀûÈóΪX1£¬Éú²úÒ»¼þÒÒÆ·ÅƼҵçµÄÀûÈóΪX2£¬·Ö±ðÇóX1£¬X2µÄ·Ö²¼ÁУ»
£¨¢ó£©¸Ã³§Ô¤¼Æ½ñºóÕâÁ½ÖÖÆ·ÅƼҵçÏúÁ¿Ï൱£¬ÓÉÓÚ×ʽðÏÞÖÆ£¬Ö»ÄÜÉú²úÆäÖÐÒ»ÖÖÆ·ÅƵļҵ磮Èô´Ó¾­¼ÃÐ§ÒæµÄ½Ç¶È¿¼ÂÇ£¬ÄãÈÏΪӦÉú²úÄÄÖÖÆ·ÅƵļҵ磿˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¸ÅÂʹ«Ê½½øÐÐÇó½â¼´¿É£»
£¨¢ò£©·½±ãÇó³ö¼×ÒÒÁì¹ÝÆ·ÅÆµÄ·Ö²¼Áм´¿É£»
£¨¢ó£©¸ù¾Ý¾ùÖµ½øÐбȽϼ´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨I£©Éè¡°¼×¡¢ÒÒÆ·ÅƼҵçÖÁÉÙÓÐÒ»¼þÊ״γöÏÖ¹ÊÕÏ·¢ÉúÔÚ±£ÐÞÆÚÄÚ¡±ÎªÊ¼þA£¬
ÔòP£¨A£©=1-$\frac{45}{50}¡Á\frac{45}{50}$=$\frac{19}{100}$----£¨4·Ö£©
£¨II£©ÒÀÌâÒâµÃ£¬X1µÄ·Ö²¼ÁÐΪ

X1123
P$\frac{1}{25}$$\frac{3}{50}$$\frac{9}{10}$
X2µÄ·Ö²¼ÁÐΪ
X21.82.9
P$\frac{1}{10}$$\frac{9}{10}$
--------------£¨8·Ö£©
£¨III£©ÓÉ£¨II£©µÃE£¨X1£©=1¡Á$\frac{1}{25}$+2¡Á$\frac{3}{50}$+3¡Á$\frac{9}{10}$=$\frac{143}{50}$=2.86£¨°ÙÔª£©£¬
E£¨X2£©=1.8¡Á$\frac{1}{10}$+2.9¡Á$\frac{9}{10}$=2.79£¨°ÙÔª£©£®-----------£¨12·Ö£©
ÒòΪE£¨X1£©£¾E£¨X2£©£¬ËùÒÔÓ¦Éú²ú¼×Æ·ÅÆ¼Òµç£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¸ÅÂʵļÆË㣬ÒÔ¼°Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°¾ùÖµµÄ¼ÆË㣬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³Ð£ÔÚ¸ßÈýµÚÒ»´ÎÄ£Ä⿼ÊÔÖÐÔ¼ÓÐ1000È˲μӿ¼ÊÔ£¬ÆäÊýѧ¿¼ÊԳɼ¨½üËÆ·þ´ÓÕý̬·Ö²¼£¬¼´X¡«N£¨100£¬a2£©£¨a£¾0£©£¬ÊÔ¾íÂú·Ö150·Ö£¬Í³¼Æ½á¹ûÏÔʾÊýѧ¿¼ÊԳɼ¨²»¼°¸ñ£¨µÍÓÚ90·Ö£©µÄÈËÊýÕ¼×ÜÈËÊýµÄ$\frac{1}{10}$£¬Ôò´Ë´ÎÊýѧ¿¼ÊԳɼ¨ÔÚ100·Öµ½110·ÖÖ®¼äµÄÈËÊýԼΪ£¨¡¡¡¡£©
A£®400B£®500C£®600D£®800

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÊýÁÐ{an}Âú×ãa1=2£¬an=an-1+2£¨n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªµÈ±ßÈý½ÇÐΡ÷ABCµÄ±ß³¤Îªa£¬Ôò$\overrightarrow{AB}•\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®$-\frac{1}{2}{a^2}$B£®$-\frac{{\sqrt{3}}}{2}{a^2}$C£®$\frac{1}{2}{a^2}$D£®$\frac{{\sqrt{3}}}{2}{a^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ¡÷ABCÖУ¬Èôa2-c2+b2+$\sqrt{2}$ab=0£¬Ôò¡ÏC=$\frac{3¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{{4}^{x}+2}$£¨x¡ÊR£©£®
£¨1£©ÈôÊýÁÐ{an}µÄͨÏʽΪan=f£¨$\frac{n}{m}$£©£¨m¡ÊN+£¬n=1£¬2£¬¡­£¬m£©£¬ÇóÊýÁÐ{an}µÄǰmÏîºÍSm
£¨2£©ÉèÊýÁÐ{bn}Âú×㣺b1=$\frac{1}{3}$£¬bn+1=bn2+bn£®ÉèTn=$\frac{1}{{b}_{1}+1}$+$\frac{1}{{b}_{2}+1}$+¡­+$\frac{1}{{b}_{n}+1}$£®Èô£¨1£©ÖеÄSnÂú×ã¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn£¬Sn£¼Tnºã³ÉÁ¢£¬ÊÔÇómµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ¡÷ABCÖУ¬C=60¡ã£¬AB=$\sqrt{3}$£¬AB±ßÉϵĸßΪ$\frac{4}{3}$£¬ÔòAC+BCµÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{10}$B£®5C£®3D£®$\sqrt{11}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AB¡ÍBC£¬AB=3£¬BC=4£¬¡÷ACDÊǵȱßÈý½ÇÐΣ¬Ôò$\overrightarrow{AC}•\overrightarrow{BD}$µÄֵΪ$\frac{7}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÊýÁÐ{an}ÊÇÕýÏîµÈ²îÊýÁУ¬Èôcn=$\frac{{{a_1}+2{a_2}+3{a_3}+¡­+n{a_n}}}{1+2+3+¡­n}$£¬ÔòÊýÁÐ{cn}ҲΪµÈ²îÊýÁУ®ÒÑÖªÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ¬Àà±ÈÉÏÊö½áÂۿɵ㨡¡¡¡£©
A£®Èô{dn}Âú×ãdn=$\frac{{{b_1}+2{b_2}+3{b_3}+¡­+n{b_n}}}{1+2+3+¡­n}$£¬Ôò{dn}Ò²ÊǵȱÈÊýÁÐ
B£®Èô{dn}Âú×ãdn=$\frac{{{b_1}•2{b_2}•3{b_3}•¡­•n{b_n}}}{1•2•3•¡­•n}$£¬Ôò{dn}Ò²ÊǵȱÈÊýÁÐ
C£®Èô{dn}Âú×ã${d_n}={[{b_1}•£¨2{b_2}£©•£¨3{b_3}£©•¡­•£¨n{b_n}£©]^{\frac{1}{1+2+¡­+n}}}$£¬Ôò{dn}Ò²ÊǵȱÈÊýÁÐ
D£®Èô{dn}Âú×ã${d_n}={[{b_1}•{b_2}^2•{b_3}^3•¡­•{b_n}^n]^{\frac{1}{1+2+¡­+n}}}$£¬Ôò{dn}Ò²ÊǵȱÈÊýÁÐ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸