精英家教网 > 高中数学 > 题目详情
13.在△ABC中,若a2-c2+b2+$\sqrt{2}$ab=0,则∠C=$\frac{3π}{4}$.

分析 由已知的式子和余弦定理的推论可求出cosC,再由内角的范围求出角C.

解答 解:由题意得,a2-c2+b2+$\sqrt{2}$ab=0,则a2-c2+b2=-$\sqrt{2}$ab,
由余弦定理得,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$-\frac{\sqrt{2}}{2}$,
又0<C<π,所以∠C=$\frac{3π}{4}$,
故答案为:$\frac{3π}{4}$.

点评 本题考查了余弦定理推论的应用,注意三角形内角的范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}x+y≥1\\{x^2}+{y^2}≤1\end{array}\right.$,则2x+y的取值范围是(  )
A.[1,2]B.[1,+∞)C.$(0,\sqrt{5}]$D.$[1,\sqrt{5}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位,圆O1的方程为ρ=4cosθ,圆O2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=-2+2sinθ}\end{array}\right.$(θ为参数),
(1)求两圆的一般方程.
(2)求两圆的公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若G是△ABC的重心,且$a\overrightarrow{G{A}}+b\overrightarrow{G{B}}+\frac{{\sqrt{3}}}{3}c\overrightarrow{GC}=\vec 0$,则角A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式$\frac{2x-1}{x}<1$的解集为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某家电产品受在保修期内维修费等因素的影响,企业生产每件的利润与该产品首次出现故障的时间有关.某厂家生产甲、乙两种品牌,保修期均为2年.现从该厂已售出的两种品牌家电中各随机抽取50件,统计数据如下:
品牌
首次出现故障时间x(年)0<x≤11<x≤2x>20<x≤2x>2
数量(件)2345545
每件利润(百元)1231.82.9
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲、乙品牌产品中随机各抽取一件,求其至少有一件首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的家电均能售出,记生产一件甲品牌的利润为X1,生产一件乙品牌家电的利润为X2,分别求X1,X2的分布列;
(Ⅲ)该厂预计今后这两种品牌家电销量相当,由于资金限制,只能生产其中一种品牌的家电.若从经济效益的角度考虑,你认为应生产哪种品牌的家电?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.当-1<m<1时,复数z=$\frac{-1+i}{m+i}$(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A、B、C的对边分别为a,b,c,且满足$\sqrt{2}$acosB=bcosC+ccosB,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过这两个焦点,点A,B分别是椭圆C的左、右顶点.
(Ⅰ)求圆O和椭圆C的方程;
(Ⅱ)已知P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N.求证:∠MQN为定值.

查看答案和解析>>

同步练习册答案