精英家教网 > 高中数学 > 题目详情
20.已知Sn为数列{an}的前n项和,且满足a1=1,anan+1=3n(n∈N+),则S2014=2•31007-2.

分析 由anan+1=3n,得${a}_{n+1}{a}_{n+2}={3}^{n+1}$,两式作商得:$\frac{{a}_{n+2}}{{a}_{n}}=3$,由此可得数列{an}的奇数项和偶数项分别构成以3为公比的等比数列,分组后利用等比数列的前n项和求得S2014

解答 解:由anan+1=3n,得${a}_{n+1}{a}_{n+2}={3}^{n+1}$,
两式作商得:$\frac{{a}_{n+2}}{{a}_{n}}=3$,
又a1=1,∴a2=3,
则数列{an}的奇数项和偶数项分别构成以3为公比的等比数列,
∴S2014=(a1+a3+…+a2013)+(a2+a4+…+a2014
=$\frac{1×(1-{3}^{1007})}{1-3}$+$\frac{3×(1-{3}^{1007})}{1-3}$
=$\frac{{3}^{1007}-1}{2}$+$\frac{{3}^{1008}-3}{2}$
=2•31007-2.
故答案为:2•31007-2.

点评 本题考查数列递推式,考查了作商法求数列的通项公式,考查了数列的分组求和,考查等比数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,已知a1=1,Sn=n2an,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若当x<-1时,不等式|x+k|+x<0恒成立,则实数k的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即X~N(100,a2)(a>0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的$\frac{1}{10}$,则此次数学考试成绩在100分到110分之间的人数约为(  )
A.400B.500C.600D.800

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二项式(x2-$\frac{1}{\sqrt{5}{x}^{3}}$)5的展开式中的常数项为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量$\overrightarrow{{e}_{1}}$=$(\begin{array}{l}{2}\\{3}\end{array})$并有特征值λ2=-1及属于特征值-1的一个特征向量$\overrightarrow{{e}_{2}}$=$(\begin{array}{l}{1}\\{-1}\end{array})$,$\overrightarrow{α}$=$(\begin{array}{l}{-1}\\{1}\end{array})$
(Ⅰ)求矩阵M;
(Ⅱ)求M5$\overrightarrow{α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-sin2x-$\sqrt{3}$(1-2sin2x)+1.
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已数列{an}满足a1=2,an=an-1+2(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,C=60°,AB=$\sqrt{3}$,AB边上的高为$\frac{4}{3}$,则AC+BC等于(  )
A.$\sqrt{10}$B.5C.3D.$\sqrt{11}$

查看答案和解析>>

同步练习册答案