14£®Èçͼ£¬µãPΪбÈýÀâÖùABC-A1B1C1µÄ²àÀâBB1ÉÏÒ»µã£¬PM¡ÍBB1½»AA1ÓÚµãM£¬PN¡ÍBB1½»CC1ÓÚµãN£®
£¨1£©ÇóÖ¤£ºCC1¡ÍMN£»
£¨2£©ÔÚÈÎÒâ¡÷DEFÖÐÓÐÓàÏÒ¶¨Àí£ºDE2=DF2+EF2-2DF•EFcos¡ÏDFE£®ÍØÕ¹µ½¿Õ¼ä£¬Àà±ÈÈý½ÇÐεÄÓàÏÒ¶¨Àí£¬Ð´³öбÈýÀâÖùµÄÈý¸ö²à̾̾»ýÓëÆäÖÐÁ½¸ö²àÃæËù³ÉµÄ¶þÃæ½ÇÖ®¼äµÄ¹ØÏµÊ½£¬²¢ÓèÒÔÖ¤Ã÷£®
£¨3£©ÔÚ£¨2£©ÖУ¬ÎÒÃÇ¿´µ½ÁËÆ½ÃæÍ¼ÐÎÖеÄÐÔÖÊÀà±Èµ½¿Õ¼äͼÐεÄÀý×Ó£¬ÕâÑùµÄÀý×Ó»¹Óв»ÉÙ£®ÏÂÃæÇë¹Û²ìÆ½Ãæ¹´¹É¶¨ÀíµÄÌõ¼þºÍ½áÂÛÌØÕ÷£¬ÊÔ׎«¹´¹É¶¨ÀíÍÆ¹ãµ½¿Õ¼äÈ¥£®
¹´¹É¶¨ÀíµÄÀà±ÈÈý½ÇÐÎABCËÄÃæÌåO-ABC
Ìõ¼þAB¡ÍACOA¡¢OB¡¢OCÁ½Á½´¹Ö±
½áÂÛAB2+AC2=BC2£¿
ÇëÔÚ´ðÌâÖ½ÉÏÍê³ÉÉϱíÖеÄÀà±È½áÂÛ£¬²¢¸ø³öÖ¤Ã÷£®

·ÖÎö £¨1£©ÓÉÌâÒâºÍÈýÀâÖùµÄÐÔÖÊ£¬Ö¤³ö CC1¡ÍÆ½ÃæPMN£¬ÔÙÖ¤ CC1¡ÍMN£®
£¨2£©ÀûÓÃÀà±ÈÍÆÀí±ß¡°¶ÔÓ¦²à̾̾»ý¡±µÃ³ö½áÂÛ£¬Ö¤Ã÷Óõ½ÓàÏÒ¶¨ÀíÆ½ÐÐËıßÐεÄÃæ»ý¹«Ê½ºÍÌâÖеĴ¹Ö±¹ØÏµ£®
£¨3£©×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£¬Ö¤Ã÷$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬CC1¡ÎBB1£¬PM¡ÍBB1£¬PN¡ÍBB1£¬
¡àCC1¡ÍPM£¬CC1¡ÍPN£¬ÇÒPM¡ÉPN=P£¬
¡àCC1¡ÍÆ½ÃæPMN£¬MN?Æ½ÃæPMN£¬
¡àCC1¡ÍMN£»£¨4·Ö£©
£¨2£©½â£ºÔÚбÈýÀâÖùABC-A1B1C1ÖУ¬ÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$
ÆäÖЦÁÎªÆ½ÃæCC1B1BÓëÆ½ÃæCC1A1AËù×é³ÉµÄ¶þÃæ½Ç£®£¨7·Ö£©
¡ßCC1¡ÍÆ½ÃæPMN£¬¡àÉÏÊöµÄ¶þÃæ½ÇΪ¡ÏMNP£¬
ÔÚ¡÷PMNÖУ¬PM2=PN2+MN2-2PN•MNcos¡ÏMNP
¡àPM2•CC12=PN2•CC12+MN2•CC12-2£¨PN•CC1£©•£¨MN•CC1£©cos¡ÏMNP£¬
¡ß${S}_{BC{C}_{1}{B}_{1}}$=PN•CC1£¬${S}_{AC{C}_{1}{A}_{1}}$=MN•CC1£¬${S}_{AB{B}_{1}{A}_{1}}$=PM•BB1£¬
¡àÓÐ$S_{AB{B_1}{A_1}}^2=S_{BC{C_1}{B_1}}^2+S_{AC{C_1}{A_1}}^2-2S_{BC{C_1}{B_1}}^{\;}•S_{AC{C_1}{A_1}}^{\;}cos¦Á$£®£¨10·Ö£©
£¨3£©¿Õ¼ä¹´¹É¶¨ÀíµÄ²ÂÏ룺
ÒÑÖªËÄÃæÌåO-ABCµÄÈýÌõ²àÀâOA¡¢OB¡¢OCÁ½Á½´¹Ö±£¬ÔòÓÐ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=S_{¡÷ABC}^2$£¨14·Ö£©
Ö¤Ã÷£º×÷OH¡ÍÆ½ÃæABC£¬´¹×ãΪH£¬Ò×µÃHΪ¡÷ABCµÄ´¹ÐÄ£®
Á¬½áCH²¢ÑÓ³¤½»ABÓÚE£¬Á¬½áOE£¬ÔòÓÐOE¡ÍAB£®
ÔÚ¡÷OABÖУ¬${S_{¡÷OAB}}=\frac{1}{2}AB•OE⇒S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•O{E^2}$
ÔÚRt¡÷EOCÖУ¬OE2=EH•EC£¬
¡à$S_{¡÷OAB}^2=\frac{1}{4}A{B^2}•£¨EH•EC£©=£¨\frac{1}{2}AB•EH£©•£¨\frac{1}{2}AB•EC£©={S_{¡÷HAB}}•{S_{¡÷CAB}}$
ͬÀí£¬$S_{¡÷OAC}^2={S_{¡÷HAC}}•{S_{¡÷BAC}}$£¬$S_{¡÷OBC}^2={S_{¡÷HBC}}•{S_{¡÷ABC}}$
ÓÚÊÇ$S_{¡÷OAB}^2+S_{¡÷OAC}^2+S_{¡÷OBC}^2=£¨{S_{¡÷HAB}}+{S_{¡÷HAC}}+{S_{¡÷HBC}}£©•{S_{¡÷ABC}}=S_{¡÷ABC}^2$£¨18·Ö£©

µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±¹ØÏµµÄÏ໥ת»¯£¬»¹¿¼²éÁËÀà±ÈÍÆÀí£¬Ö¤Ã÷½áÂÛʱÀûÓÃÓàÏÒ¶¨Àí£¬¼ÓÉÏÊʵ±µÄ±äÐÎÖ¤³ö½áÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶Îª1£¬Ô²ÐÄΪO£¬ÇÒ$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}£¬|\overrightarrow{AB}|=\sqrt{3}|\overrightarrow{OA}|£¬Ôò\overrightarrow{CA}•\overrightarrow{CB}$µÄÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë1=4¼°ÊôÓÚÌØÕ÷Öµ4µÄÒ»¸öÌØÕ÷ÏòÁ¿$\overrightarrow{{e}_{1}}$=$£¨\begin{array}{l}{2}\\{3}\end{array}£©$²¢ÓÐÌØÕ÷Öµ¦Ë2=-1¼°ÊôÓÚÌØÕ÷Öµ-1µÄÒ»¸öÌØÕ÷ÏòÁ¿$\overrightarrow{{e}_{2}}$=$£¨\begin{array}{l}{1}\\{-1}\end{array}£©$£¬$\overrightarrow{¦Á}$=$£¨\begin{array}{l}{-1}\\{1}\end{array}£©$
£¨¢ñ£©Çó¾ØÕóM£»
£¨¢ò£©ÇóM5$\overrightarrow{¦Á}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨-2£¬4£©£¬$\overrightarrow{b}$=£¨5£¬2£©£¬ÔòÏòÁ¿$\overrightarrow{a}$+$\overrightarrow{b}$=£¨3£¬6£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÊýÁÐ{an}Âú×ãa1=2£¬an=an-1+2£¨n¡Ý2£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ä³ÆóÒµÓÐÁ½¸ö·Ö³§Éú²úijÖÖÁã¼þ£¬°´¹æ¶¨ÄÚ¾¶³ß´ç£¨µ¥Î»£ºcm£©µÄÖµÂäÔÚ[29.94£¬30.06£©µÄÁã¼þΪÓÅÖÊÆ·£®´ÓÁ½¸ö·Ö³§Éú²úµÄÁã¼þÖи÷³é³öÁË500¼þ£¬Á¿ÆäÄÚ¾¶³ß´ç£¬µÃ½á¹ûÈç±í£º
¼×³§£º
·Ö×é[29.86£¬
29.90 £©
[29.90£¬
29.94£©
[29.94£¬
29.98£©
[29.9 8£¬
30.02£©
[30.02£¬
30.06£©
[30.06£¬
30.10£©
[30.10£¬
30.14£©
ƵÊý12638618292614
ÒÒ³§£º
·Ö×é[29.86£¬
29.90£©
[29.90£¬
29.94£©
[29.94£¬
29.98£©
[29.98£¬
30.02£©
[30.02£¬
30.06£©
[30.06£¬
30.10£©
[30.10£¬
30.14£©
ƵÊý297185159766218
£¨1£©ÊÔ·Ö±ð¹À¼ÆÁ½¸ö·Ö³§Éú²úµÄÁã¼þµÄÓÅÖÊÆ·ÂÊ£»
£¨2£©ÓÉÒÔÉÏͳ¼ÆÊý¾ÝÌîÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÎÊÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Á½¸ö·Ö³§Éú²úµÄÁã¼þµÄÖÊÁ¿ÓвîÒ족£®
¼×³§ÒÒ³§ºÏ¼Æ
ÓÅÖÊÆ·
·ÇÓÅÖÊÆ·
ºÏ¼Æ
¸½K2=$\frac{n£¨ad-bc£©2}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬
p£¨K2¡Ýk£©0.050.01
k3.8416.635

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªµÈ±ßÈý½ÇÐΡ÷ABCµÄ±ß³¤Îªa£¬Ôò$\overrightarrow{AB}•\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®$-\frac{1}{2}{a^2}$B£®$-\frac{{\sqrt{3}}}{2}{a^2}$C£®$\frac{1}{2}{a^2}$D£®$\frac{{\sqrt{3}}}{2}{a^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{{4}^{x}+2}$£¨x¡ÊR£©£®
£¨1£©ÈôÊýÁÐ{an}µÄͨÏʽΪan=f£¨$\frac{n}{m}$£©£¨m¡ÊN+£¬n=1£¬2£¬¡­£¬m£©£¬ÇóÊýÁÐ{an}µÄǰmÏîºÍSm
£¨2£©ÉèÊýÁÐ{bn}Âú×㣺b1=$\frac{1}{3}$£¬bn+1=bn2+bn£®ÉèTn=$\frac{1}{{b}_{1}+1}$+$\frac{1}{{b}_{2}+1}$+¡­+$\frac{1}{{b}_{n}+1}$£®Èô£¨1£©ÖеÄSnÂú×ã¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn£¬Sn£¼Tnºã³ÉÁ¢£¬ÊÔÇómµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªz¡ÊC£¬|z-£¨1+i£©|=1£¬Ôò|z+2+3i|µÄ×îСֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸