精英家教网 > 高中数学 > 题目详情
14.正项等比数列{an}中,a1=sinθ,a2=cosθ,a3=tanθ,则1+cosθ是此等比数列的第8项.

分析 正项等比数列{an}中,a1=sinθ,a2=cosθ,a3=tanθ,可得${a}_{2}^{2}$=a1a3,公比q=$\frac{cosθ}{sinθ}$=$\frac{1}{tanθ}$.化为:cosθ=tan2θ.可得a4=1,以此类推即可得出.

解答 解:∵正项等比数列{an}中,a1=sinθ,a2=cosθ,a3=tanθ,
∴${a}_{2}^{2}$=a1a3,公比q=$\frac{cosθ}{sinθ}$=$\frac{1}{tanθ}$.
∴cos2θ=sinθ•tanθ,
化为:cosθ=tan2θ.
∴a4=$tanθ×\frac{cosθ}{sinθ}$=1,
a5=$\frac{cosθ}{sinθ}$=$\frac{1}{tanθ}$,
a6=$\frac{co{s}^{2}θ}{si{n}^{2}θ}$=$\frac{1}{ta{n}^{2}θ}$,
a7=$\frac{1}{ta{n}^{3}θ}$,
a8=$\frac{1}{ta{n}^{4}θ}$=$\frac{1}{co{s}^{2}θ}$=1+tan2θ=1+cosθ,
因此1+cosθ是此等比数列的第8项.
故答案为:8.

点评 本题考查了等比数列的通项公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列四条直线,倾斜角最大的是(  )
A.y=-x+1B.y=x+1C.y=2x+1D.x=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若tanA,tanB,tanC均为整数,且∠A>∠B>∠C,则下列选项错误(  )
A.∠A<80°B.∠B<60°C.∠C<50°D.∠A>65°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=sinx•cosx•cos2x的周期是$\frac{π}{2}$,值域是[-$\frac{1}{4}$,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=Asin(ωx+$\frac{ωπ}{2}$)(A>0,ω>0)在区间[-$\frac{3π}{4}$,-$\frac{π}{6}$]上单调递增,则ω的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中正确的个数是(  )
(1)若a,b,c成等差数列,则a2,b2,c2一定成等差数列;
(2)若a,b,c成等差数列,则2a,2b,2c可能成等差数列;
(3)若a,b,c成等差数列,则ka+2,kb+2,kc+2一定成等差数列;
(4)若a,b,c成等差数列,则$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$可能成等差数列.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,平行四边形ABCD⊥平面CDE,AD⊥DE.
(I)求证:DE⊥平面ABCD;
(Ⅱ)若M为线段BE中点,N为线段CE的一个三等分点,求证:MN不可能与平面ABCD平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
求:(1)a1+a2+a3+a4+a5的值;
(2)a1+a3+a5的值;
(3)|a1|+|a2|+|a3|+|a4|+|a5|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义:$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,若复数z满足$|\begin{array}{l}{z}&{1}\\{i}&{-i}\end{array}|$=-1-i,则z等于(  )
A.1+iB.1-iC.-iD.3-i

查看答案和解析>>

同步练习册答案