分析 求出f(x)的单调增区间,根据集合关系列出不等式解出ω.
解答 解:令-$\frac{π}{2}+2kπ≤$$ωx+\frac{ωπ}{2}$≤$\frac{π}{2}+2kπ$,解得$-\frac{π}{2}$-$\frac{π}{2ω}$+$\frac{2kπ}{ω}$≤x≤-$\frac{π}{2}$+$\frac{π}{2ω}$+$\frac{2kπ}{ω}$.
∵f(x)在区间[-$\frac{3π}{4}$,-$\frac{π}{6}$]上单调递增,
∴$\left\{\begin{array}{l}{-\frac{π}{2}-\frac{π}{2ω}+\frac{2kπ}{ω}≤-\frac{3π}{4}}\\{-\frac{π}{2}+\frac{π}{2ω}+\frac{2kπ}{ω}≥-\frac{π}{6}}\end{array}\right.$,解得$\left\{\begin{array}{l}{ω≤2-8k}\\{ω≤\frac{3}{2}+6k}\end{array}\right.$,
∴当2-8k≤$\frac{3}{2}+6k$即k≥$\frac{1}{28}$时,ω≤2-8k,
∴当k=1时,ω取得最大值-6.
当2-8k>$\frac{3}{2}+6k$即k<$\frac{1}{28}$时,ω≤$\frac{3}{2}+6k$,
∴当k=0时,ω取得最大值$\frac{3}{2}$.
综上,ω的最大值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查了正弦函数的单调性,集合的包含关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{10}}{8}$ | D. | $\frac{\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直 | B. | 平行 | C. | 相交于点($\overline{x}$,$\overline{y}$) | D. | 重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com