精英家教网 > 高中数学 > 题目详情
精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的图象(部分)如图所示.
(1)求f(x)的解析式;
(2)当x∈[0,1]时,求函数f(x)的最值.
分析:(1)根据图象,求出A,T,ω,利用图象过(-
2
3
,-2)求出φ,求f(x)的解析式;
(2)利用(1)当x∈[0,1]时,求出πx+
π
6
∈[
π
6
6
],推出2sin(πx+
π
6
)的范围,然后求函数f(x)的最值
解答:解:(1)由题意可知,A=2,T=2,ω=
2
=π,
图象经过(-
2
3
,-2),-2=2sin(-
3
+φ) |φ|<
π
2

可得φ=
π
6

f(x)=2sin(πx+
π
6

(2)x∈[0,1],πx+
π
6
∈[
π
6
6
]
2sin(πx+
π
6
)∈[-1,2]
所以函数f(x)的最大值为:2,最小值为:-1
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的最值,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案