精英家教网 > 高中数学 > 题目详情
已知y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则(  )
A、af(b)>bf(a)
B、af(a)>bf(b)
C、af(a)<bf(b)
D、af(b)<bf(a)
考点:利用导数研究函数的单调性,导数的运算
专题:导数的综合应用
分析:根据条件构造函数g(x)=xf(x),利用导数研究函数的单调性即可得到结论.
解答: 解:∵xf′(x)>-f(x),
∴xf′(x)+f(x)>0,
构造函数g(x)=xf(x),
则g′(x)=xf′(x)+f(x)>0,
即函数g(x)在R上单调递增,
∵a>b,∴g(a)>g(b),
即af(a)>bf(b),
故选:B
点评:本题主要考查函数值的大小比较,根据条件构造函数g(x)=xf(x),利用导数研究函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax在区间〔1,+∞〕内是单调函数,则a的最大值是(  )
A、3B、2C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左、右焦点,若椭圆上存在一点P,使(
OP
+
OF2
)•
PF2
=0(O为坐标原点),则△F1PF2的面积是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,5,-1),
b
=(2,2,3),
c
=(1,-1,2),则向量
a
-
b
+4
c
的坐标为(  )
A、(5,-1,4)
B、(5,1,-4)
C、(-5,1,4)
D、(-5,-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x=2与双曲线C:x2-4y2=8的渐近线交于A,B两点,设P为双曲线上的任意一点,若
OP
=a
OA
+b
OB
(a,b∈R,O为坐标原点),则a+b的取值范围是(  )
A、(-∞,-1]∪[1,+∞)
B、(-∞,-
1
2
]∪[
1
2
,+∞)
C、(-∞,-
2
]∪[
2
,+∞)
D、(-∞,-
2
2
]∪[
2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)|x-1|<1-2x
(2)|x-1|-|x+1|>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,求z=x+2y-4的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

1,4,9,16…这些数可以用图1的点阵表示,古希腊毕达哥拉斯学派将其称为正方形数,记第n个数为an+1,在图2的杨辉三角中,第n(n≥2)行是(a+b)n-1展开式的二项式系数
C
0
n-1
C
1
n-1
,…,
C
n-1
n-1
记杨辉三角的前n行所有数之和为Tn
(Ⅰ)求an和Tn的通项公式;
(Ⅱ)当n≥2时,比较an与Tn的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

C
r
12
=
C
2r-3
12
,则r=
 

查看答案和解析>>

同步练习册答案