精英家教网 > 高中数学 > 题目详情
在空间四边形ABCD中,已知AB=3,BC=2
5
,CD=4,AD=
5
,BD=2,则异面直线AC与BD所成角的大小是(  )
A、30°B、45°
C、60°D、90°
考点:异面直线及其所成的角
专题:空间位置关系与距离,空间角
分析:根据已知的边的关系可以判断△ABD,和△BCD为Rt△,所以得到BD⊥AD,BD⊥CD,所以BD⊥平面ACD,所以BD⊥AC,所以异面直线AC与BD所成角的大小就求出来了.
解答: 解:如图,∵AD=
5
,BD=2,AB=3
,∴AB2=AD2+BD2
∴△ABD为Rt△,∠ADB=90°,即BD⊥AD,同理,BD⊥CD,AD∩CD=D;
∴BD⊥平面ACD,AC?平面ACD;
∴BD⊥AC,∴异面直线AC与BD所成角的大小是90°.
故选:D.
点评:考查根据边的关系判断直角三角形的方法,线面垂直的判定定理,及线面垂直的性质,异面直线所成的角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x>2,则x+
4
x-2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(1+3i)•i的虚部是(  )
A、0B、1C、3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是(  )
A、残差
B、残差平方和
C、随机误差
D、相关指数R2

查看答案和解析>>

科目:高中数学 来源: 题型:

利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定分类变量“X和Y有关系”的可信度.如果K2的观测值为7.8,则下列说法中正确的是(  )
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83
A、在犯错误的概率不超过1%的前提下,认为“X和Y有关系”
B、在犯错误的概率不超过1%的前提下,认为“X和Y有关系”
C、有99.5%以上的把握认为“X和Y有关系”
D、有99.5%以上的把握认为“X和Y有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=
2
cosx的图象,需将函数y=
2
sin(2x+
π
4
)的图象上所有的点的变化正确的是(  )
A、横坐标缩短到原来的
1
2
倍(纵坐标不变),再向左平行移动
π
8
个单位长度
B、横坐标缩短到原来的
1
2
倍(纵坐标不变),再向右平行移动
π
4
个单位长度
C、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动
π
4
个单位长度
D、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动
π
8
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
2
+
35
100的展开式中,有理项的个数是(  )
A、15个B、33个
C、17个D、16个

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)不等式|x|-1≤0的解集为(  )
A、(-∞,1]
B、[-1,1]
C、(-∞,0]
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知矩形ABCD中,AB=2,BC=a,若PA⊥面AC,在BC边上取点E,使PE⊥DE,则满足条件的E点有两个时,a的取值范围是(  )
A、a>4B、a≥4
C、0<a<4D、0<a≤4

查看答案和解析>>

同步练习册答案