20£®Ä³Ã½Ìå¶Ô¡°ÄÐÅ®ÑÓ³ÙÍËÐÝ¡±ÕâÒ»¹«ÖÚ¹Ø×¢µÄÎÊÌâ½øÐÐÃûÒâµ÷²é£¬Èç±íÊÇÔÚijµ¥Î»µÃµ½µÄÊý¾Ý£º
 ÔÞͬ  ·´¶ÔºÏ¼Æ
ÄÐ50 150200
Å®30 170 200
ºÏ¼Æ 80320 400
£¨¢ñ£©ÄÜ·ñÓÐ97.5%µÄ°ÑÎÕÈÏΪ¶ÔÕâÒ»ÎÊÌâµÄ¿´·¨ÓëÐÔ±ðÓйأ¿
£¨¢ò£©´ÓÔÞͬ¡°ÄÐÅ®ÑÓ³ÙÍËÐÝ¡±µÄ80ÈËÖУ¬ÀûÓ÷ֲã³éÑùµÄ·½·¨³é³ö8ÈË£¬È»ºó´ÓÖÐÑ¡³ö3È˽øÐгÂÊö·¢ÑÔ£¬Éè·¢ÑÔµÄŮʿÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÖеÄÊý¾Ý¼ÆËãK2=6.25£¾5.024£¬´Ó¶øÓÐ97.5%µÄ°ÑÎÕÈÏΪ¶ÔÕâÒ»ÎÊÌâµÄ¿´·¨ÓëÐÔ±ðÓйØ
£¨¢ò£©ÓÉÒÑÖªµÃ³éÑù±ÈΪ$\frac{8}{80}=\frac{1}{10}$£¬¹Ê³é³öµÄ8ÈËÖУ¬ÄÐÊ¿ÓÐ5ÈË£¬Å®Ê¿ÓÐ3ÈË£®¸ù¾ÝÌâÒ⣬X·þ´Ó³¬¼¸ºÎ·Ö²¼£¬$P£¨X=k£©=\frac{{{C_3}^k{C_5}^{3-k}}}{{{C_8}^3}}$£¬k=0£¬1£¬2£¬3£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁÐºÍÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÖеÄÊý¾Ý¼ÆË㣺
K2=$\frac{{400¡Á{{£¨50¡Á170-30¡Á150£©}^2}}}{80¡Á320¡Á200¡Á200}=6.25$
ÒòΪ6.25£¾5.024£¬ËùÒÔÓÐ97.5%µÄ°ÑÎÕÈÏΪ¶ÔÕâÒ»ÎÊÌâµÄ¿´·¨ÓëÐÔ±ðÓйØ
£¨¢ò£©ÓÉÒÑÖªµÃ³éÑù±ÈΪ$\frac{8}{80}=\frac{1}{10}$£¬¹Ê³é³öµÄ8ÈËÖУ¬ÄÐÊ¿ÓÐ5ÈË£¬Å®Ê¿ÓÐ3ÈË£®
¸ù¾ÝÌâÒ⣬X·þ´Ó³¬¼¸ºÎ·Ö²¼£¬$P£¨X=k£©=\frac{{{C_3}^k{C_5}^{3-k}}}{{{C_8}^3}}$£¬k=0£¬1£¬2£¬3¡­£¨8·Ö£©
P£¨X=0£©=$\frac{{C}_{3}^{0}{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{5}{28}$£¬
P£¨X=1£©=$\frac{{C}_{3}^{1}{C}_{5}^{2}}{{C}_{8}^{3}}$=$\frac{15}{28}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}{C}_{5}^{1}}{{C}_{8}^{3}}$=$\frac{15}{56}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}{C}_{5}^{0}}{{C}_{8}^{3}}$=$\frac{1}{56}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º

X0123
P$\frac{5}{28}$$\frac{15}{28}$$\frac{15}{56}$$\frac{1}{56}$
XµÄÊýѧÆÚÍûΪ$E£¨X£©=0¡Á\frac{5}{28}+1¡Á\frac{15}{28}+2¡Á\frac{15}{56}+3¡Á\frac{1}{56}=\frac{9}{8}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒⳬ¼¸ºÎ·Ö²¼µÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒân¡ÊN*£¬Sn=£¨-1£©nan+$\frac{1}{{2}^{n}}$+2n-6£¬ÇÒ£¨an+1-p£©£¨an-p£©£¼0ºã³ÉÁ¢£¬ÔòʵÊýpµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-$\frac{7}{4}$£¬$\frac{23}{4}$£©B£®£¨-¡Þ£¬$\frac{23}{4}$£©C£®£¨-$\frac{7}{4}$£¬6£©D£®£¨-2£¬$\frac{23}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x2-2x+2£¬f1£¨x£©=f£¨x£©£¬fn+1£¨x£©=f£¨fn£¨x£©£©£¬n¡ÊN*£¬Ôòf2016£¨x£©ÔÚ[1£¬2]ÉϵÄ×îСֵ£¬×î´óÖµ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®0£¬1B£®0£¬2C£®1£¬2D£®1£¬4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÊýÁÐ{an}ÖУ¬an£¾0£¬a1=$\frac{1}{2}$£¬Èç¹ûan+1ÊÇ1Óë$\frac{{2{a_n}{a_{n+1}}+1}}{4-a_n^2}$µÄµÈ±ÈÖÐÏÄÇôa1+$\frac{a_2}{2^2}$+$\frac{a_3}{3^2}$+$\frac{a_4}{4^2}$+¡­$\frac{{{a_{99}}}}{{{{99}^2}}}$µÄÖµÊÇ$\frac{99}{100}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Éèfn£¨x£©=£¨3n-1£©x2-x£¨n¡ÊN*£©£¬An={x|fn£¨x£©£¼0}
£¨1£©¶¨ÒåAn={x|x1£¼x£¼x2}µÄ³¤¶ÈΪx2-x1£¬ÇóAnµÄ³¤¶È£»
£¨2£©°ÑAnµÄ³¤¶È¼Ç×÷ÊýÁÐ{an}£¬Áîbn=an•an+1£»
1¡ãÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£»
2¡ãÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃS1£¬Sm£¬Sn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓеÄm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©=a£¨x+1£©£¨x-a£©£¬Èôf£¨x£©ÔÚx=a´¦È¡µÃ¼«Ð¡Öµ£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®-1¡Üa£¼0B£®a£¾0»òa¡Ü-1C£®-1£¼a£¼0D£®a£¾0»òa£¼-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏA={x|lgx£¾0}£¬B={x|2£¼2x£¼8}£¬Ôò£¨¡¡¡¡£©
A£®A=BB£®A⊆BC£®A?BD£®A¡ÉB=∅

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn=$\frac{{n}^{2}+n}{2}$£¨n¡ÊN+£©£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=an•3an£¨n¡ÊN+£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªsinA£¨sinA-$\frac{1}{2}$sinB£©=sin2C-sin2B£¬ÇÒc=2£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®1C£®$\frac{{2\sqrt{15}}}{3}$D£®$\frac{{\sqrt{15}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸