精英家教网 > 高中数学 > 题目详情

【题目】已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是;此时四面体F﹣ADP的外接球的半径是

【答案】
【解析】解:设FA=x(x>1),AD=y,
∵矩形ABCD与矩形ADEF所在的平面互相垂直,AB=1,FA=x(x>1),AD=y,
∴FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x
在Rt△DCP中,PC=
在Rt△FAP中,AP=
在Rt△ABP中,BP=
∵BC=BP+PC= + =y
整理得y2= ,令x2=
则y2=
则当t= ,即x= 时,y取最小值2.
四面体F﹣ADP的外接球的球心为DF的中点,DF= = ,四面体F﹣ADP的外接球的半径是
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在区间(0,+∞)上不是增函数的是(
A.y=2x+1
B.y=3x2+1
C.
D.y=2x2+x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acsinB=

(1)求角C的大小:

(2)若bsin(π-A)=acosB,且b=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lg(x2﹣3x)的定义域为集合A,函数 的定义域为集合B(其中a∈R,且a>0).
(1)当a=1时,求集合B;
(2)若A∩B≠,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题p:不等式|x|+|x-1|≥m的解集为R;q:函数 是减函数.若这两个命题中有且只有一个真命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角分别为A,B,C,且A≠
(1)化简
(2)若角A满足sinA+cosA=
(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;
(ii)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的个数是( )

①相关系数值越小,变量之间的相关性越强.

②命题“存在”的否定是“不存在”.

③“”为真是“”为假的必要不充分条件.

④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是.

A. 4 B. 2 C. 3 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(Ⅰ)求的值;

(Ⅱ)求的值.

查看答案和解析>>

同步练习册答案