精英家教网 > 高中数学 > 题目详情
10.已知cosα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$,且α,β∈(0,$\frac{π}{2}$),求tan2(α-β)的值.

分析 根据同角三角函数间的基本关系,求出tanα=$\frac{4}{3}$,tanβ=1,再根据正切的和差公式,求出tan(α-β),再根据tan2(α-β)=$\frac{2tan(α-β)}{1-ta{n}^{2}(α-β)}$,得到答案.

解答 解:∵cosα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$,且α,β∈(0,$\frac{π}{2}$),
∴sinα=$\frac{4}{5}$,sinβ=$\frac{\sqrt{2}}{2}$,
∴tanα=$\frac{4}{3}$,tanβ=1,
∴tan(α-β)=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{\frac{4}{3}-1}{1+\frac{4}{3}}$=$\frac{1}{7}$,
∴tan2(α-β)=$\frac{2tan(α-β)}{1-ta{n}^{2}(α-β)}$=$\frac{\frac{2}{7}}{1-\frac{1}{49}}$=$\frac{7}{24}$

点评 此题考查了二倍角的正切公式,同角三角函数间的基本关系,两角和差的正切公式,熟练掌握公式是解本题的关键,同时注意角度的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2≥1},则集合∁RM=(  )
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|x<-1或x>1}D.{x|x≤-1或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的函数f(x)对任意的实数x,都有f(x-2)=-f(x),且当x∈[-2,0],y∈R时,f(x+y)+f(x)=2x3-4(x+y)2,则y=f(x)在x=5处的切线方程为9x-y-26=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos2x+2sinxcosx-1(x∈R)
(Ⅰ)若角α的终边经过点P(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),求f(α)的值;
(Ⅱ)函数f(x)的图象可以由函数y=$\sqrt{2}$sinx(x∈R)的图象经过怎样的变换得到的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=x2-2x+1在x=-2附近的平均变化率为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱柱ABC-A1B1C1的各棱长均为1,D是BC上一点,AD⊥C1D,以A为坐标原点,平面ABC内AC的垂线,AC,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则点D的坐标为($\frac{\sqrt{3}}{4}$,$\frac{3}{4}$,0),平面ADC1的一个法向量为($\sqrt{3}$,-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数.
(1)y=sin4$\frac{x}{4}$+cos4$\frac{x}{4}$;
(2)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1);
(3)y=-sin$\frac{x}{2}$(1-2cos2$\frac{x}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(1,-1),则2$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.10B.(5,5)C.(5,6)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{MA}$=(-2,4),$\overrightarrow{MB}$=(2,6),则$\frac{1}{2}$$\overrightarrow{AB}$=(  )
A.(0,5)B.(0,1)C.(2,5)D.(2,1)

查看答案和解析>>

同步练习册答案