精英家教网 > 高中数学 > 题目详情
7.在各项均为正数的等比数列{an}中,若anan+1=22n+1,则a5=(  )
A.4B.8C.16D.32

分析 令n=1,得到第1项与第2项的积为8,记作①,令n=2,得到第2项与第3项的积为32,记作②,然后利用②÷①,求出q的值,然后把q的值代入经过检验得到满足题意的q的值即可.

解答 解:各项均为正数的等比数列{an}中,
当n=1时,可得a1a2=8,当n=2时,a2a3=32,
相除可得 $\frac{{a}_{3}}{{a}_{1}}$=q2=4,q=±2.
当q=-2舍去.
∴公比q=2,a1a2=8,可得a1=2,
a5=32,
故选:32.

点评 此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式化简求值,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分别与
圆O:x2+y2=4交于点A,B,与圆M:(x-2)2+(y-1)2=1交于点C,D.
(1)若$AB=\frac{3}{2}\sqrt{7}$,求CD的长;
(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.有5件不同的商品,其中2件次品,3件正品,从中取出2件,至少有1件次品的概率为(  )
A.$\frac{4}{5}$B.$\frac{7}{10}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,离心率为$\frac{1}{2}$,点P为其上动点,且三角形PF1F2的面积最大值为$\sqrt{3}$,O为坐标原点.
(1)求椭圆C的方程;
(2)若点M,N为C上的两个动点,求常数m,使$\overrightarrow{OM}•\overrightarrow{ON}$=m时,点O到直线MN的距离为定值,求这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间$[{-\frac{5}{6},\frac{13}{6}}]$上随机取一个数x,则事件“$-1≤{log_{\frac{1}{3}}}({x+1})≤1$”不发生的概率为(  )
A.$\frac{8}{9}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|-2|x+1|的最大值为k.
(1)求k的值;
(2)若$\frac{1}{m}+\frac{1}{2n}=k({m>0,n>0})$,求证:m+2n≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是(  )
A.16B.24C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点,F(c,0)是右焦点,若抛物线${y^2}=-\frac{{4{a^2}}}{c}x$的准线l上存在一点P,使∠APF=30°,则双曲线的离心率的范围是(  )
A.[2,+∞)B.(1,2]C.(1,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱锥A-BCD中,AB⊥平面BCD,∠BCD=90°,E、F分别是AC、AD上的点,且$\frac{AE}{AC}=\frac{AF}{AD}$.
(1)求证:平面BEF⊥平面ABC;
(2)若平面BEF⊥平面ACD,求证:BE⊥AC.

查看答案和解析>>

同步练习册答案